scispace - formally typeset

Journal ArticleDOI

How to share a secret

01 Nov 1979-Communications of The ACM (ACM)-Vol. 22, Iss: 11, pp 612-613

TL;DR: This technique enables the construction of robust key management schemes for cryptographic systems that can function securely and reliably even when misfortunes destroy half the pieces and security breaches expose all but one of the remaining pieces.

AbstractIn this paper we show how to divide data D into n pieces in such a way that D is easily reconstructable from any k pieces, but even complete knowledge of k - 1 pieces reveals absolutely no information about D. This technique enables the construction of robust key management schemes for cryptographic systems that can function securely and reliably even when misfortunes destroy half the pieces and security breaches expose all but one of the remaining pieces.

...read more

Content maybe subject to copyright    Report

Citations
More filters

Book ChapterDOI
15 Aug 1999
Abstract: Cryptosystem designers frequently assume that secrets will be manipulated in closed, reliable computing environments. Unfortunately, actual computers and microchips leak information about the operations they process. This paper examines specific methods for analyzing power consumption measurements to find secret keys from tamper resistant devices. We also discuss approaches for building cryptosystems that can operate securely in existing hardware that leaks information.

6,498 citations


Proceedings ArticleDOI
20 May 2007
TL;DR: A system for realizing complex access control on encrypted data that is conceptually closer to traditional access control methods such as role-based access control (RBAC) and secure against collusion attacks is presented.
Abstract: In several distributed systems a user should only be able to access data if a user posses a certain set of credentials or attributes. Currently, the only method for enforcing such policies is to employ a trusted server to store the data and mediate access control. However, if any server storing the data is compromised, then the confidentiality of the data will be compromised. In this paper we present a system for realizing complex access control on encrypted data that we call ciphertext-policy attribute-based encryption. By using our techniques encrypted data can be kept confidential even if the storage server is untrusted; moreover, our methods are secure against collusion attacks. Previous attribute-based encryption systems used attributes to describe the encrypted data and built policies into user's keys; while in our system attributes are used to describe a user's credentials, and a party encrypting data determines a policy for who can decrypt. Thus, our methods are conceptually closer to traditional access control methods such as role-based access control (RBAC). In addition, we provide an implementation of our system and give performance measurements.

3,825 citations


Cites background or methods from "How to share a secret"

  • ...Next, we give background information on bilinear maps....

    [...]

  • ...However, in these definitions the attributes will describe the users and the access structures will be used to label different sets of encrypted data....

    [...]


Proceedings ArticleDOI
30 Oct 2006
TL;DR: This work develops a new cryptosystem for fine-grained sharing of encrypted data that is compatible with Hierarchical Identity-Based Encryption (HIBE), and demonstrates the applicability of the construction to sharing of audit-log information and broadcast encryption.
Abstract: As more sensitive data is shared and stored by third-party sites on the Internet, there will be a need to encrypt data stored at these sites. One drawback of encrypting data, is that it can be selectively shared only at a coarse-grained level (i.e., giving another party your private key). We develop a new cryptosystem for fine-grained sharing of encrypted data that we call Key-Policy Attribute-Based Encryption (KP-ABE). In our cryptosystem, ciphertexts are labeled with sets of attributes and private keys are associated with access structures that control which ciphertexts a user is able to decrypt. We demonstrate the applicability of our construction to sharing of audit-log information and broadcast encryption. Our construction supports delegation of private keys which subsumesHierarchical Identity-Based Encryption (HIBE).

3,765 citations


Cites background from "How to share a secret"

  • ...Shamir [33] and Blakley [6] were the first to propose a construction for secret-sharing schemes where the access structure is a threshold gate....

    [...]


Book ChapterDOI
22 May 2005
Abstract: We introduce a new type of Identity-Based Encryption (IBE) scheme that we call Fuzzy Identity-Based Encryption. In Fuzzy IBE we view an identity as set of descriptive attributes. A Fuzzy IBE scheme allows for a private key for an identity, ω, to decrypt a ciphertext encrypted with an identity, ω ′, if and only if the identities ω and ω ′ are close to each other as measured by the “set overlap” distance metric. A Fuzzy IBE scheme can be applied to enable encryption using biometric inputs as identities; the error-tolerance property of a Fuzzy IBE scheme is precisely what allows for the use of biometric identities, which inherently will have some noise each time they are sampled. Additionally, we show that Fuzzy-IBE can be used for a type of application that we term “attribute-based encryption”. In this paper we present two constructions of Fuzzy IBE schemes. Our constructions can be viewed as an Identity-Based Encryption of a message under several attributes that compose a (fuzzy) identity. Our IBE schemes are both error-tolerant and secure against collusion attacks. Additionally, our basic construction does not use random oracles. We prove the security of our schemes under the Selective-ID security model.

3,147 citations


Posted Content
Abstract: We introduce a new type of Identity-Based Encryption (IBE) scheme that we call Fuzzy Identity-Based Encryption. In Fuzzy IBE we view an identity as set of descriptive attributes. A Fuzzy IBE scheme allows for a private key for an identity, ω, to decrypt a ciphertext encrypted with an identity, ω ′, if and only if the identities ω and ω ′ are close to each other as measured by the “set overlap” distance metric. A Fuzzy IBE scheme can be applied to enable encryption using biometric inputs as identities; the error-tolerance property of a Fuzzy IBE scheme is precisely what allows for the use of biometric identities, which inherently will have some noise each time they are sampled. Additionally, we show that Fuzzy-IBE can be used for a type of application that we term “attribute-based encryption”. In this paper we present two constructions of Fuzzy IBE schemes. Our constructions can be viewed as an Identity-Based Encryption of a message under several attributes that compose a (fuzzy) identity. Our IBE schemes are both error-tolerant and secure against collusion attacks. Additionally, our basic construction does not use random oracles. We prove the security of our schemes under the Selective-ID security model.

3,128 citations


References
More filters

Book
01 Jan 1968
TL;DR: The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid.
Abstract: A fuel pin hold-down and spacing apparatus for use in nuclear reactors is disclosed. Fuel pins forming a hexagonal array are spaced apart from each other and held-down at their lower end, securely attached at two places along their length to one of a plurality of vertically disposed parallel plates arranged in horizontally spaced rows. These plates are in turn spaced apart from each other and held together by a combination of spacing and fastening means. The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid. This apparatus is particularly useful in connection with liquid cooled reactors such as liquid metal cooled fast breeder reactors.

17,918 citations


Journal ArticleDOI
TL;DR: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key.
Abstract: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: (1) Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intented recipient. Only he can decipher the message, since only he knows the corresponding decryption key. (2) A message can be “signed” using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in “electronic mail” and “electronic funds transfer” systems. A message is encrypted by representing it as a number M, raising M to a publicly specified power e, and then taking the remainder when the result is divided by the publicly specified product, n, of two large secret primer numbers p and q. Decryption is similar; only a different, secret, power d is used, where e * d ≡ 1(mod (p - 1) * (q - 1)). The security of the system rests in part on the difficulty of factoring the published divisor, n.

14,611 citations


Book
01 Jan 1974
TL;DR: This text introduces the basic data structures and programming techniques often used in efficient algorithms, and covers use of lists, push-down stacks, queues, trees, and graphs.
Abstract: From the Publisher: With this text, you gain an understanding of the fundamental concepts of algorithms, the very heart of computer science. It introduces the basic data structures and programming techniques often used in efficient algorithms. Covers use of lists, push-down stacks, queues, trees, and graphs. Later chapters go into sorting, searching and graphing algorithms, the string-matching algorithms, and the Schonhage-Strassen integer-multiplication algorithm. Provides numerous graded exercises at the end of each chapter. 0201000296B04062001

9,164 citations


"How to share a secret" refers methods in this paper

  • ...Efficient O(n log 2 n) algorithms for polynomial evaluation and interpolation are discussed in [ 1 ] and [3], but even the straightforward quadratic algorithms are fast enough for practical key management schemes....

    [...]


Proceedings ArticleDOI
01 Dec 1979
TL;DR: Certain cryptographic keys, such as a number which makes it possible to compute the secret decoding exponent in an RSA public key cryptosystem, 1 , 5 or the system master key and certain other keys in a DES cryptos system, 3 are so important that they present a dilemma.
Abstract: Certain cryptographic keys, such as a number which makes it possible to compute the secret decoding exponent in an RSA public key cryptosystem, 1 , 5 or the system master key and certain other keys in a DES cryptosystem, 3 are so important that they present a dilemma. If too many copies are distributed one might go astray. If too few copies are made they might all be destroyed.

3,042 citations


Journal Article
01 Jan 1981-Literacy

2,636 citations