scispace - formally typeset
Search or ask a question
Journal ArticleDOI

How We Transmit Memories to Other Brains: Constructing Shared Neural Representations Via Communication

01 Oct 2017-Cerebral Cortex (Oxford University Press)-Vol. 27, Iss: 10, pp 4988-5000
TL;DR: It is reported, for the first time, that event-specific neural patterns observed in the default mode network are shared across the encoding, recall, and construction of the same real-life episode.
Abstract: Humans are able to mentally construct an episode when listening to another person's recollection, even though they themselves did not experience the events. However, it is unknown how strongly the neural patterns elicited by mental construction resemble those found in the brain of the individual who experienced the original events. Using fMRI and a verbal communication task, we traced how neural patterns associated with viewing specific scenes in a movie are encoded, recalled, and then transferred to a group of naive listeners. By comparing neural patterns across the 3 conditions, we report, for the first time, that event-specific neural patterns observed in the default mode network are shared across the encoding, recall, and construction of the same real-life episode. This study uncovers the intimate correspondences between memory encoding and event construction, and highlights the essential role our common language plays in the process of transmitting one's memories to other brains.

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 1964
TL;DR: In this paper, the notion of a collective unconscious was introduced as a theory of remembering in social psychology, and a study of remembering as a study in Social Psychology was carried out.
Abstract: Part I. Experimental Studies: 2. Experiment in psychology 3. Experiments on perceiving III Experiments on imaging 4-8. Experiments on remembering: (a) The method of description (b) The method of repeated reproduction (c) The method of picture writing (d) The method of serial reproduction (e) The method of serial reproduction picture material 9. Perceiving, recognizing, remembering 10. A theory of remembering 11. Images and their functions 12. Meaning Part II. Remembering as a Study in Social Psychology: 13. Social psychology 14. Social psychology and the matter of recall 15. Social psychology and the manner of recall 16. Conventionalism 17. The notion of a collective unconscious 18. The basis of social recall 19. A summary and some conclusions.

5,690 citations

Journal ArticleDOI
TL;DR: The results reveal the existence of a common spatial organization for memories in high-level cortical areas, and that neural patterns during perception are altered systematically across people into shared memory representations for real-life events.
Abstract: Our lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? Participants viewed a 50-min movie, then verbally described the events during functional MRI, producing unguided detailed descriptions lasting up to 40 min. As each person spoke, event-specific spatial patterns were reinstated in default-network, medial-temporal, and high-level visual areas. Individual event patterns were both highly discriminable from one another and similar among people, suggesting consistent spatial organization. In many high-order areas, patterns were more similar between people recalling the same event than between recall and perception, indicating systematic reshaping of percept into memory. These results reveal the existence of a common spatial organization for memories in high-level cortical areas, where encoded information is largely abstracted beyond sensory constraints, and that neural patterns during perception are altered systematically across people into shared memory representations for real-life events.

446 citations

Journal ArticleDOI
TL;DR: This tutorial develops the logic of intersubject correlation (ISC) analysis and discusses the family of neuroscientific questions that stem from this approach, and extends this logic to spatially distributed response patterns and functional network estimation.
Abstract: Our capacity to jointly represent information about the world underpins our social experience. By leveraging one individual's brain activity to model another's, we can measure shared information across brains-even in dynamic, naturalistic scenarios where an explicit response model may be unobtainable. Introducing experimental manipulations allows us to measure, for example, shared responses between speakers and listeners or between perception and recall. In this tutorial, we develop the logic of intersubject correlation (ISC) analysis and discuss the family of neuroscientific questions that stem from this approach. We also extend this logic to spatially distributed response patterns and functional network estimation. We provide a thorough and accessible treatment of methodological considerations specific to ISC analysis and outline best practices.

220 citations

Journal ArticleDOI
TL;DR: The authors suggest that the default mode network (DMN) is an active and dynamic sense-making network that integrates incoming extrinsic information with prior intrinsic information to form rich, context-dependent models of situations as they unfold over time.
Abstract: The default mode network (DMN) is classically considered an 'intrinsic' system, specializing in internally oriented cognitive processes such as daydreaming, reminiscing and future planning. In this Perspective, we suggest that the DMN is an active and dynamic 'sense-making' network that integrates incoming extrinsic information with prior intrinsic information to form rich, context-dependent models of situations as they unfold over time. We review studies that relied on naturalistic stimuli, such as stories and movies, to demonstrate how an individual's DMN neural responses are influenced both by external information accumulated as events unfold over time and by the individual's idiosyncratic past memories and knowledge. The integration of extrinsic and intrinsic information over long timescales provides a space for negotiating a shared neural code, which is necessary for establishing shared meaning, shared communication tools, shared narratives and, above all, shared communities and social networks.

205 citations

Journal ArticleDOI
TL;DR: A network of brain regions that is sensitive to the shared temporal structure of these naturalistic situations is revealed, including the posterior medial cortex, medial prefrontal cortex, and superior frontal gyrus, which exhibited schematic event patterns that generalized across stories, subjects, and modalities.
Abstract: Understanding movies and stories requires maintaining a high-level situation model that abstracts away from perceptual details to describe the location, characters, actions, and causal relationships of the currently unfolding event. These models are built not only from information present in the current narrative, but also from prior knowledge about schematic event scripts, which describe typical event sequences encountered throughout a lifetime. We analyzed fMRI data from 44 human subjects (male and female) presented with 16 three-minute stories, consisting of four schematic events drawn from two different scripts (eating at a restaurant or going through the airport). Aside from this shared script structure, the stories varied widely in terms of their characters and storylines, and were presented in two highly dissimilar formats (audiovisual clips or spoken narration). One group was presented with the stories in an intact temporal sequence, while a separate control group was presented with the same events in scrambled order. Regions including the posterior medial cortex, medial prefrontal cortex (mPFC), and superior frontal gyrus exhibited schematic event patterns that generalized across stories, subjects, and modalities. Patterns in mPFC were also sensitive to overall script structure, with temporally scrambled events evoking weaker schematic representations. Using a Hidden Markov Model, patterns in these regions predicted the script (restaurant vs airport) of unlabeled data with high accuracy and were used to temporally align multiple stories with a shared script. These results extend work on the perception of controlled, artificial schemas in human and animal experiments to naturalistic perception of complex narratives. SIGNIFICANCE STATEMENT In almost all situations we encounter in our daily lives, we are able to draw on our schematic knowledge about what typically happens in the world to better perceive and mentally represent our ongoing experiences. In contrast to previous studies that investigated schematic cognition using simple, artificial associations, we measured brain activity from subjects watching movies and listening to stories depicting restaurant or airport experiences. Our results reveal a network of brain regions that is sensitive to the shared temporal structure of these naturalistic situations. These regions abstract away from the particular details of each story, activating a representation of the general type of situation being perceived.

191 citations


Cites background or methods from "How We Transmit Memories to Other B..."

  • ...Based on prior work on the representation of high-level, cross-modal situation models (Zadbood et al., 2017), we focused our analysis primarily on regions within the default mode network....

    [...]

  • ...…the structure of real-life events over relatively long timescales (minutes) (Hasson et al., 2015; Baldassano et al., 2017) and are involved during a spoken replay of a narrative (J. Chen et al., 2017; Zadbood et al., 2017), suggesting that they encode and simulate sequences of actions in the world....

    [...]

  • ...…work has shown that high-level regions, including PMC, exhibit activity patterns that generalize across audio and video versions of the same story (Zadbood et al., 2017); this work extends this generalization to a further level of abstraction, showing similarities between distinct stories with…...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a different approach to problems of multiple significance testing is presented, which calls for controlling the expected proportion of falsely rejected hypotheses -the false discovery rate, which is equivalent to the FWER when all hypotheses are true but is smaller otherwise.
Abstract: SUMMARY The common approach to the multiplicity problem calls for controlling the familywise error rate (FWER). This approach, though, has faults, and we point out a few. A different approach to problems of multiple significance testing is presented. It calls for controlling the expected proportion of falsely rejected hypotheses -the false discovery rate. This error rate is equivalent to the FWER when all hypotheses are true but is smaller otherwise. Therefore, in problems where the control of the false discovery rate rather than that of the FWER is desired, there is potential for a gain in power. A simple sequential Bonferronitype procedure is proved to control the false discovery rate for independent test statistics, and a simulation study shows that the gain in power is substantial. The use of the new procedure and the appropriateness of the criterion are illustrated with examples.

83,420 citations


"How We Transmit Memories to Other B..." refers methods in this paper

  • ...Individual P values were generated for each voxel and these were corrected for multiple comparisons using false discovery rate (FDR; Benjamini and Hochberg 1995) at q = 0.05....

    [...]

Journal ArticleDOI
TL;DR: A baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF is identified, suggesting the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
Abstract: A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.

10,708 citations


"How We Transmit Memories to Other B..." refers background in this paper

  • ...These areas include retrosplenial and posterior parietal cortices, medial prefrontal cortex, bilateral hippocampus, and parahippocampal gyrus, known collectively as the default mode network (DMN; Raichle et al. 2001; Buckner et al. 2008)....

    [...]

Journal ArticleDOI
TL;DR: Past observations are synthesized to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment, and for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
Abstract: Thirty years of brain imaging research has converged to define the brain’s default network—a novel and only recently appreciated brain system that participates in internal modes of cognition Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations These two subsystems converge on important nodes of integration including the posterior cingulate cortex The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer’s disease

8,448 citations

01 Jan 1964
TL;DR: In this paper, the notion of a collective unconscious was introduced as a theory of remembering in social psychology, and a study of remembering as a study in Social Psychology was carried out.
Abstract: Part I. Experimental Studies: 2. Experiment in psychology 3. Experiments on perceiving III Experiments on imaging 4-8. Experiments on remembering: (a) The method of description (b) The method of repeated reproduction (c) The method of picture writing (d) The method of serial reproduction (e) The method of serial reproduction picture material 9. Perceiving, recognizing, remembering 10. A theory of remembering 11. Images and their functions 12. Meaning Part II. Remembering as a Study in Social Psychology: 13. Social psychology 14. Social psychology and the matter of recall 15. Social psychology and the manner of recall 16. Conventionalism 17. The notion of a collective unconscious 18. The basis of social recall 19. A summary and some conclusions.

5,690 citations