scispace - formally typeset
Open accessJournal ArticleDOI: 10.7554/ELIFE.64563

HP1 proteins compact DNA into mechanically and positionally stable phase separated domains

04 Mar 2021-eLife (eLife Sciences Publications Limited)-Vol. 10
Abstract: In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1β, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1β. Finally, we find that differences in each HP1 paralog's DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale.

... read more


16 results found

Journal ArticleDOI: 10.1016/J.TCB.2021.03.001
Marina Feric1, Tom Misteli1Institutions (1)
Abstract: Phase separation is emerging as a paradigm to explain the self-assembly and organization of membraneless bodies in the cell. Recent advances show that this principle also extends to nucleoprotein complexes, including DNA-based structures. We discuss here recent observations on the role of phase separation in genome organization across the evolutionary spectrum from bacteria to mammals. These findings suggest that molecular interactions amongst DNA-binding proteins evolved to form a variety of biomolecular condensates with distinct material properties that affect genome organization and function. We suggest that phase separation contributes to genome organization across evolution and that the resulting phase behavior of genomes may underlie regulatory mechanisms and disease.

... read more

Topics: Genome (53%)

14 Citations

Open accessJournal ArticleDOI: 10.7554/ELIFE.63972
Amy R. Strom1, Ronald J Biggs2, Edward J. Banigan3, Xiaotao Wang2  +12 moreInstitutions (5)
09 Jun 2021-eLife
Abstract: Chromatin, which consists of DNA and associated proteins, contains genetic information and is a mechanical component of the nucleus. Heterochromatic histone methylation controls nucleus and chromosome stiffness, but the contribution of heterochromatin protein HP1α (CBX5) is unknown. We used a novel HP1α auxin-inducible degron human cell line to rapidly degrade HP1α. Degradation did not alter transcription, local chromatin compaction, or histone methylation, but did decrease chromatin stiffness. Single-nucleus micromanipulation reveals that HP1α is essential to chromatin-based mechanics and maintains nuclear morphology, separate from histone methylation. Further experiments with dimerization-deficient HP1αI165E indicate that chromatin crosslinking via HP1α dimerization is critical, while polymer simulations demonstrate the importance of chromatin-chromatin crosslinkers in mechanics. In mitotic chromosomes, HP1α similarly bolsters stiffness while aiding in mitotic alignment and faithful segregation. HP1α is therefore a critical chromatin-crosslinking protein that provides mechanical strength to chromosomes and the nucleus throughout the cell cycle and supports cellular functions.

... read more

Topics: Chromatin (67%), Histone methylation (64%), Mitosis (57%) ... show more

9 Citations

Open accessJournal ArticleDOI: 10.1016/J.DNAREP.2021.103179
Vincent Spegg1, Matthias Altmeyer1Institutions (1)
14 Jul 2021-DNA Repair
Abstract: Protein recruitment to DNA break sites is an integral part of the DNA damage response (DDR). Elucidation of the hierarchy and temporal order with which DNA damage sensors as well as repair and signaling factors assemble around chromosome breaks has painted a complex picture of tightly regulated macromolecular interactions that build specialized compartments to facilitate repair and maintenance of genome integrity. While many of the underlying interactions, e.g. between repair factors and damage-induced histone marks, can be explained by lock-and-key or induced fit binding models assuming fixed stoichiometries, structurally less well defined interactions, such as the highly dynamic multivalent interactions implicated in phase separation, also participate in the formation of multi-protein assemblies in response to genotoxic stress. Although much remains to be learned about these types of cooperative and highly dynamic interactions and their functional roles, the rapidly growing interest in material properties of biomolecular condensates and in concepts from polymer chemistry and soft matter physics to understand biological processes at different scales holds great promises. Here, we discuss nuclear condensates in the context of genome integrity maintenance, highlighting the cooperative potential between clustered stoichiometric binding and phase separation. Rather than viewing them as opposing scenarios, their combined effects can balance structural specificity with favorable physicochemical properties relevant for the regulation and function of multilayered nuclear condensates.

... read more

5 Citations

Open accessJournal ArticleDOI: 10.1002/CPZ1.109
Serena Sanulli1, Geeta J. Narlikar2Institutions (2)
01 May 2021-
Abstract: Liquid-liquid phase separation (LLPS) has been invoked as an underlying mechanism involved in the formation and function of several cellular membrane-less compartments. Given the explosion of studies in this field in recent years, it has become essential to converge on clear guidelines and methods to rigorously investigate LLPS and advance our understanding of this phenomenon. Here, we describe basic methods to (1) visualize droplets formed by nucleic acid binding proteins and (2) characterize the liquid-like nature of these droplets under controlled in vitro experimental conditions. We discuss the rationale behind these methods, as well as caveats and limitations. Our ultimate goal is to guide scientists interested in learning how to test for LLPS, while appreciating that the field is evolving rapidly and adjusting constantly to the growing knowledge. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Observing phase-separated condensates by microscopy. Support Protocol: Coating of glass-bottom plates. Basic Protocol 2: Assessing condensate reversibility by changing ionic strength. Alternate Protocol 1: Assessing condensate reversibility by dilution. Alternate Protocol 2: Assessing condensate reversibility by altering temperature. Basic Protocol 3: Quantifying phase separation by centrifugation assay. Basic Protocol 4: Quantifying phase separation by turbidity assay.

... read more

2 Citations

Journal ArticleDOI: 10.1016/J.SBI.2021.06.009
Abstract: Studies over the past decade have highlighted the key role of liquid-liquid phase separation in cellular organization and function. Dynamic compartmentalization of transcription factors and coactivators by such phase-separated condensates regulates the assembly of transcriptional machinery at genomic loci. Although rapid advances in microscopy have demonstrated the ubiquity of such condensates, a rigorous characterization of the physics of phase separation in transcription remains to be carried out. In this review, we discuss theoretical and experimental evidence for biomolecular condensates as dynamic regulators of transcription. Looking beyond, we highlight functional consequences for transcription factor dynamics and gene expression and discuss potential pitfalls of misclassifying biomolecular condensates as liquid droplets in the absence of a rigorous physical description.

... read more

Topics: Super-enhancer (51%), Transcription factor (50%)

2 Citations


76 results found

Journal ArticleDOI: 10.1038/35065132
Monika Lachner1, Dónal O'Carroll1, Stephen Rea1, Karl Mechtler1  +1 moreInstitutions (1)
01 Mar 2001-Nature
Abstract: Distinct modifications of histone amino termini, such as acetylation, phosphorylation and methylation, have been proposed to underlie a chromatin-based regulatory mechanism that modulates the accessibility of genetic information. In addition to histone modifications that facilitate gene activity, it is of similar importance to restrict inappropriate gene expression if cellular and developmental programmes are to proceed unperturbed. Here we show that mammalian methyltransferases that selectively methylate histone H3 on lysine 9 (Suv39h HMTases) generate a binding site for HP1 proteins--a family of heterochromatic adaptor molecules implicated in both gene silencing and supra-nucleosomal chromatin structure. High-affinity in vitro recognition of a methylated histone H3 peptide by HP1 requires a functional chromo domain; thus, the HP1 chromo domain is a specific interaction motif for the methyl epitope on lysine9 of histone H3. In vivo, heterochromatin association of HP1 proteins is lost in Suv39h double-null primary mouse fibroblasts but is restored after the re-introduction of a catalytically active SWUV39H1 HMTase. Our data define a molecular mechanism through which the SUV39H-HP1 methylation system can contribute to the propagation of heterochromatic subdomains in native chromatin.

... read more

Topics: Histone code (75%), Histone methyltransferase (74%), Histone lysine methylation (72%) ... show more

2,711 Citations

Journal ArticleDOI: 10.1038/35065138
01 Mar 2001-Nature
Abstract: Heterochromatin protein 1 (HP1) is localized at heterochromatin sites where it mediates gene silencing. The chromo domain of HP1 is necessary for both targeting and transcriptional repression. In the fission yeast Schizosaccharomyces pombe, the correct localization of Swi6 (the HP1 equivalent) depends on Clr4, a homologue of the mammalian SUV39H1 histone methylase. Both Clr4 and SUV39H1 methylate specifically lysine 9 of histone H3 (ref. 6). Here we show that HP1 can bind with high affinity to histone H3 methylated at lysine 9 but not at lysine 4. The chromo domain of HP1 is identified as its methyl-lysine-binding domain. A point mutation in the chromo domain, which destroys the gene silencing activity of HP1 in Drosophila, abolishes methyl-lysine-binding activity. Genetic and biochemical analysis in S. pombe shows that the methylase activity of Clr4 is necessary for the correct localization of Swi6 at centromeric heterochromatin and for gene silencing. These results provide a stepwise model for the formation of a transcriptionally silent heterochromatin: SUV39H1 places a 'methyl marker' on histone H3, which is then recognized by HP1 through its chromo domain. This model may also explain the stable inheritance of the heterochromatic state.

... read more

Topics: Chromo shadow domain (71%), Heterochromatin protein 1 (68%), Histone lysine methylation (66%) ... show more

2,676 Citations

Open accessJournal ArticleDOI: 10.1038/NRM.2017.7
Abstract: In addition to membrane-bound organelles, eukaryotic cells feature various membraneless compartments, including the centrosome, the nucleolus and various granules. Many of these compartments form through liquid–liquid phase separation, and the principles, mechanisms and regulation of their assembly as well as their cellular functions are now beginning to emerge. Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid–liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.

... read more

Topics: Biological phase (52%), Ribosome biogenesis (51%)

1,988 Citations

Open accessJournal ArticleDOI: 10.1038/NATURE10879
Pilong Li1, Sudeep Banjade1, Hui-Chun Cheng1, Soyeon Kim1  +10 moreInstitutions (5)
15 Mar 2012-Nature
Abstract: Cells are organized on length scales ranging from angstrom to micrometres. However, the mechanisms by which angstrom-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.

... read more

Topics: Biological phase (56%), Actin nucleation (55%), Phase transition (52%)

1,308 Citations

Victor A. Bloomfield1Institutions (1)
01 Jan 1997-Biopolymers
Abstract: In the presence of multivalent cations, high molecular weight DNA undergoes a dramatic condensation to a compact, usually highly ordered toroidal structure. This review begins with an overview of DNA condensation: condensing agents, morphology, kinetics, and reversibility, and the minimum size required to form orderly condensates. It then summarizes the statistical mechanics of the collapse of stiff polymers, which shows why DNA condensation is abrupt and why toroids are favored structures. Various ways to estimate or measure intermolecular forces in DNA condensation are discussed, all of them agreeing that the free energy change per base pair is very small, on the order of 1% of thermal energy. Experimental evidence is surveyed showing that DNA condensation occurs when about 90% of its charge is neutralized by counterions. The various intermolecular forces whose interplay gives rise to DNA condensation are then reviewed. The entropy loss upon collapse of the expanded wormlike coil costs free energy, and stiffness sets limits on tight curvature. However, the dominant contributions seem to come from ions and water. Electrostatic repulsions must be overcome by high salt concentrations or by the correlated fluctuations of territorially bound multivalent cations. Hydration must be adjusted to allow a cooperative accommodation of the water structure surrounding surface groups on the DNA helices as they approach. Undulations of the DNA in its confined surroundings extend the range of the electrostatic forces. The condensing ions may also subtly modify the local structure of the double helix.

... read more

Topics: DNA condensation (62%), Intermolecular force (52%)

1,033 Citations

No. of citations received by the Paper in previous years
Network Information
Related Papers (5)
Phase separation drives heterochromatin domain formation21 Jun 2017, Nature

Amy R. Strom, Alexander Emelyanov +5 more

99% related
Organization of Chromatin by Intrinsic and Regulated Phase Separation03 Oct 2019, Cell

Bryan A. Gibson, Lynda K. Doolittle +7 more

94% related
HP1 reshapes nucleosome core to promote phase separation of heterochromatin16 Oct 2019, Nature

Serena Sanulli, Michael J. Trnka +7 more

94% related
Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation26 Jun 2009, Science

Clifford P. Brangwynne, Christian R. Eckmann +9 more

88% related