scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hsp70 chaperones: cellular functions and molecular mechanism.

01 Mar 2005-Cellular and Molecular Life Sciences (Springer)-Vol. 62, Iss: 6, pp 670-684
TL;DR: This work has shown that for specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100, and this ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target H Sp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the HSp70-substrate complex.
Abstract: Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This Review summarizes the concepts of the protective Hsp network, and the most conserved Hsps are molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures.

1,570 citations


Cites background from "Hsp70 chaperones: cellular function..."

  • ...Under physiological conditions, Hsp70s are involved in the de novo folding of proteins, and under stress they prevent the aggregation of unfolding proteins and can even refold aggregated proteins (Mayer and Bukau, 2005)....

    [...]

Journal ArticleDOI
TL;DR: Heat shock 70 kDa proteins are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions.
Abstract: Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein-protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate.

1,427 citations


Cites background from "Hsp70 chaperones: cellular function..."

  • ...The 40 kDa amino-terminal adenine nucleotide-binding domain regulates the conformation of the 25 kDa carboxy-terminal peptide-binding domain (PBD), which binds to a five amino acid segment of clients that is enriched in hydrophobic residue...

    [...]

Journal ArticleDOI
TL;DR: The heat shock proteins have thus become targets for rational anti-cancer drug design: HSP90 inhibitors are currently showing much promise in clinical trials, whereas the increased expression of HSPs in tumors is forming the basis of chaperone-based immunotherapy.

887 citations

Journal ArticleDOI
TL;DR: The depletion or inhibition of HSP27 and HS70 frequently reduces the size of the tumors and even can cause their complete involution (for HSP70).
Abstract: Heat shock proteins (HSP) HSP27 and HSP70 are expressed in response to a wide variety of physiological and environmental insults including anticancer chemotherapy, thus allowing the cell to survive to lethal conditions. Several mechanisms account for the cytoprotective effect of HSP27 and HSP70. (1) Both proteins are powerful chaperones. (2) They both inhibit key effectors of the apoptotic machinery at the pre and post-mitochondrial level. (3) They participate in the proteasome-mediated degradation of proteins under stress conditions, thereby contributing to the so called "protein triage". In cancer cells, the expression of HSP27 and/or HSP70 is abnormally high, and both HSP27 and HSP70 may participate in oncogenesis and in resistance to chemotherapy. In rodent models, HSP27 or HSP70 over-expression increases tumor growth and metastatic potential. The depletion or inhibition of HSP27 and HS70 frequently reduces the size of the tumors and even can cause their complete involution (for HSP70). Therefore, the inhibition of HSP70 and HSP27 has become a novel strategy of cancer therapy.

641 citations

Journal ArticleDOI
TL;DR: Recent advances that have increased the understanding of the molecular mechanisms and working principles of the Hsp70 network are described, and new opportunities for the development of chemical compounds that modulate disease-related HSp70 activities are offered.
Abstract: The 70-kDa heat shock proteins (Hsp70s) are ubiquitous molecular chaperones that act in a large variety of cellular protein folding and remodelling processes. They function virtually at all stages of the life of proteins from synthesis to degradation and are thus crucial for maintaining protein homeostasis, with direct implications for human health. A large set of co-chaperones comprising J-domain proteins and nucleotide exchange factors regulate the ATPase cycle of Hsp70s, which is allosterically coupled to substrate binding and release. Moreover, Hsp70s cooperate with other cellular chaperone systems including Hsp90, Hsp60 chaperonins, small heat shock proteins and Hsp100 AAA+ disaggregases, together constituting a dynamic and functionally versatile network for protein folding, unfolding, regulation, targeting, aggregation and disaggregation, as well as degradation. In this Review we describe recent advances that have increased our understanding of the molecular mechanisms and working principles of the Hsp70 network. This knowledge showcases how the Hsp70 chaperone system controls diverse cellular functions, and offers new opportunities for the development of chemical compounds that modulate disease-related Hsp70 activities. The Hsp70 chaperones regulate protein metabolism, including folding, unfolding, subcellular localization, aggregation/disaggregation and incorporation into protein complexes. Recent studies have revealed the mechanisms of functions of Hsp70s and their co-chaperones, highlighting new opportunities for modulating disease-related Hsp70 roles.

572 citations

References
More filters
Journal ArticleDOI
08 Mar 2002-Science
TL;DR: Understanding how the thousands of different proteins synthesized in a cell use this chaperone machinery has profound implications for biotechnology and medicine.
Abstract: Efficient folding of many newly synthesized proteins depends on assistance from molecular chaperones, which serve to prevent protein misfolding and aggregation in the crowded environment of the cell. Nascent chain–binding chaperones, including trigger factor, Hsp70, and prefoldin, stabilize elongating chains on ribosomes in a nonaggregated state. Folding in the cytosol is achieved either on controlled chain release from these factors or after transfer of newly synthesized proteins to downstream chaperones, such as the chaperonins. These are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. Understanding how the thousands of different proteins synthesized in a cell use this chaperone machinery has profound implications for biotechnology and medicine.

3,288 citations

Journal ArticleDOI
26 Nov 1998-Nature
TL;DR: It is reported that when Drosophila Hsp90 is mutant or pharmacologically impaired, phenotypic variation affecting nearly any adult structure is produced, with specific variants depending on the genetic background and occurring both in laboratory strains and in wild populations.
Abstract: The heat-shock protein Hsp90 supports diverse but specific signal transducers and lies at the interface of several developmental pathways. We report here that when Drosophila Hsp90 is mutant or pharmacologically impaired, phenotypic variation affecting nearly any adult structure is produced, with specific variants depending on the genetic background and occurring both in laboratory strains and in wild populations. Multiple, previously silent, genetic determinants produced these variants and, when enriched by selection, they rapidly became independent of the Hsp90 mutation. Therefore, widespread variation affecting morphogenic pathways exists in nature, but is usually silent; Hsp90 buffers this variation, allowing it to accumulate under neutral conditions. When Hsp90 buffering is compromised, for example by temperature, cryptic variants are expressed and selection can lead to the continued expression of these traits, even when Hsp90 function is restored. This provides a plausible mechanism for promoting evolutionary change in otherwise entrenched developmental processes.

2,160 citations

Journal ArticleDOI
TL;DR: This purified system of five purified proteins should facilitate understanding of how eukaryotlc hsp70 and hsp90 work together as essential components of a process that alters the conformations of substrate proteins to states that respond in signal transduction.
Abstract: Nearly 100 proteins are known to be regulated by hsp90. Most of these substrates or "client proteins" are involved in signal transduction, and they are brought into complex with hsp90 by a multiprotein hsp90/hsp70-based chaperone machinery. In addition to binding substrate proteins at the chaperone site(s), hsp90 binds cofactors at other sites that are part of the heterocomplex assembly machinery as well as immunophilins that connect assembled substrate*hsp90 complexes to protein-trafficking systems. In the 5 years since we last reviewed this subject, much has been learned about hsp90 structure, nucleotide-binding, and cochaperone interactions; the most important concept is that ATP hydrolysis by an intrinsic ATPase activity results in a conformational change in hsp90 that is required to induce conformational change in a substrate protein. The conformational change induced in steroid receptors is an opening of the steroid-binding cleft so that it can be accessed by steroid. We have now developed a minimal system of five purified proteins-hsp90, hsp70, Hop, hsp40, and p23- that assembles stable receptor*hsp90 heterocomplexes. An hsp90*Hop*hsp70*hsp40 complex opens the cleft in an ATP-dependent process to produce a receptor*hsp90 heterocomplex with hsp90 in its ATP-bound conformation, and p23 then interacts with the hsp90 to stabilize the complex. Stepwise assembly experiments have shown that hsp70 and hsp40 first interact with the receptor in an ATP-dependent reaction to produce a receptor*hsp70*hsp40 complex that is "primed" to be activated to the steroid-binding state in a second ATP-dependent step with hsp90, Hop, and p23. Successful use of the five-protein system with other substrates indicates that it can assemble signal protein*hsp90 heterocomplexes whether the substrate is a receptor, a protein kinase, or a transcription factor. This purified system should facilitate understanding of how eukaryotic hsp70 and hsp90 work together as essential components of a process that alters the conformations of substrate proteins to states that respond in signal transduction.

1,463 citations

Journal ArticleDOI
TL;DR: Recent evidence and hypotheses suggesting that the HSPs may be important modifying factors in cellular responses to a variety of physiologically relevant conditions such as hyperthermia, exercise, oxidative stress, metabolic challenge, and aging are examined.
Abstract: Cells from virtually all organisms respond to a variety of stresses by the rapid synthesis of a highly conserved set of polypeptides termed heat shock proteins (HSPs). The precise functions of HSPs are unknown, but there is considerable evidence that these stress proteins are essential for survival at both normal and elevated temperatures. HSPs also appear to play a critical role in the development of thermotolerance and protection from cellular damage associated with stresses such as ischemia, cytokines, and energy depletion. These observations suggest that HSPs play an important role in both normal cellular homeostasis and the stress response. This mini-review examines recent evidence and hypotheses suggesting that the HSPs may be important modifying factors in cellular responses to a variety of physiologically relevant conditions such as hyperthermia, exercise, oxidative stress, metabolic challenge, and aging.

1,402 citations

Journal ArticleDOI
10 Jul 1998-Cell
TL;DR: It is concluded that Hsp104 has a protein remodeling activity that acts on trapped, aggregated proteins and requires specific interactions with conventional chaperones to promote refolding of the intermediates it produces.

1,360 citations