scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hybrid materials based on lanthanide organic complexes: a review

07 Jan 2013-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 42, Iss: 1, pp 387-410
TL;DR: This critical review begins with a formulation of the fundamentals of lanthanide organic complex luminescence, and presents various current designed ideas, synthetic routes, luminescent behaviors and potentials of the latest advanced organic-inorganic hybrid materials.
Abstract: A great deal of research has been carried out on lanthanide organic complex-based organic-inorganic hybrid materials in the last decade. This critical review begins with a formulation of the fundamentals of lanthanide organic complex luminescence, and presents various current designed ideas, synthetic routes, luminescence behaviors and potentials of the latest advanced (a) sol-gel materials, (b) mesoporous materials, (c) titania materials, (d) ionic liquids and ionogels, (e) polymers, and (f) bifunctional magnetic-optical composites based on lanthanide organic complexes. Finally, challenges and opportunities for further improvement of organic-inorganic hybrid luminescent materials based on lanthanide organic complexes will be discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: The trivalent europium ion (Eu3+) is well known for its strong luminescence in the red spectral region, but this ion is also interesting from a theoretical point of view as mentioned in this paper.

1,906 citations

Book ChapterDOI
TL;DR: Luminescent ratiometric thermometers combining high spatial and temporal resolution at the micro-and nanoscale, where the conventional methods are ineffective, have emerged over the last decade as an effervescent field of research, essentially motivated by their potential applications in nanotechnology, photonics, and biomedicine as discussed by the authors.
Abstract: Luminescent ratiometric thermometers combining high spatial and temporal resolution at the micro- and nanoscale, where the conventional methods are ineffective, have emerged over the last decade as an effervescent field of research, essentially motivated by their potential applications in nanotechnology, photonics, and biomedicine. Among the distinct luminescent thermal probes, lanthanide-based materials play a central role in the field due to their unique thermometric response and intriguing emission features (eg, high quantum yield, narrow bandwidth, long-lived emission, large Stokes shifts, and ligand-dependent luminescence sensitization). This chapter offers a general overview of recent examples of single- and dual-center Ln3 +-based thermometers, emphasizing those working at nanometric scale, being focused on how to quantify their performance accordingly to the relevant parameters: relative sensitivity, temperature uncertainty, spatial and temporal resolution, repeatability (or test–retest reliability), and reproducibility. The emission mechanisms supporting single- and dual-center emissions are reviewed, together with the advantages and limitations of each approach. Illustrative examples of the rich variety of systems designed and developed to sense temperature are provided and explored. Finally, we discuss the challenges and opportunities in the development of highly sensitive luminescent ratiometric thermometers that are currently facing the scientists in this exciting research field.

330 citations

Journal ArticleDOI
TL;DR: In this article, a series of CaTiO3 phosphors doped with trivalent europium (Eu3+) and codoped with potassium (K+) ions were prepared by the solid state reaction method and X-ray diffraction results revealed that the obtained powder phosphors consisted out of a single-phase orthorhombic structure and it also indicated that the incorporation of the dopants/co-dopants did not affect the crystal structure.
Abstract: This paper reports on the defect correlated self-quenching and spectroscopic investigation of calcium titanate (CaTiO3) phosphors. A series of CaTiO3 phosphors doped with trivalent europium (Eu3+) and codoped with potassium (K+) ions were prepared by the solid state reaction method. The X-ray diffraction results revealed that the obtained powder phosphors consisted out of a single-phase orthorhombic structure and it also indicated that the incorporation of the dopants/co-dopants did not affect the crystal structure. The scanning electron microscopy images revealed the irregular morphology of the prepared phosphors consisting out of μm sized diameter particles. The Eu3+ doped phosphors illuminated with ultraviolet light showed the characteristic red luminescence corresponding to the 5D0→7FJ transitions of Eu3+. As a charge compensator, K+ ions were incorporated into the CaTiO3:Eu3+ phosphors, which enhanced the photoluminescence (PL) intensities depending on the doping concentration of K+. The concentration quenching of Eu3+ in this host is discussed in the light of ion-ion interaction, electron phonon coupling, and defect to ion energy transfer. The spectral characteristics and the Eu-O ligand behaviour were determined using the Judd-Ofelt theory from the PL spectra instead of the absorption spectra. The CIE (International Commission on Illumination) parameters were calculated using spectral energy distribution functions and McCamy's empirical formula. Photometric characterization indicated the suitability of K+ compensated the CaTiO3:Eu3+ phosphor for pure red emission in light-emitting diode applications.

236 citations

Journal ArticleDOI
TL;DR: The lanthanides are under the limelight when it comes to high technology as discussed by the authors, because of their remarkable and unmatched optical and magnetic properties, these elements are used in strategic application.
Abstract: Because of their remarkable and unmatched optical and magnetic properties, the lanthanides are under the limelight when it comes to high technology. These elements are used in strategic application...

223 citations

References
More filters
Journal ArticleDOI
22 Oct 1992-Nature
TL;DR: In this paper, the synthesis of mesoporous inorganic solids from calcination of aluminosilicate gels in the presence of surfactants is described, in which the silicate material forms inorganic walls between ordered surfactant micelles.
Abstract: MICROPOROUS and mesoporous inorganic solids (with pore diameters of ≤20 A and ∼20–500 A respectively)1 have found great utility as catalysts and sorption media because of their large internal surface area. Typical microporous materials are the crystalline framework solids, such as zeolites2, but the largest pore dimensions found so far are ∼10–12 A for some metallophosphates3–5 and ∼14 A for the mineral cacoxenite6. Examples of mesoporous solids include silicas7 and modified layered materials8–11, but these are invariably amorphous or paracrystalline, with pores that are irregularly spaced and broadly distributed in size8,12. Pore size can be controlled by intercalation of layered silicates with a surfactant species9,13, but the final product retains, in part, the layered nature of the precursor material. Here we report the synthesis of mesoporous solids from the calcination of aluminosilicate gels in the presence of surfactants. The material14,15 possesses regular arrays of uniform channels, the dimensions of which can be tailored (in the range 16 A to 100 A or more) through the choice of surfactant, auxiliary chemicals and reaction conditions. We propose that the formation of these materials takes place by means of a liquid-crystal 'templating' mechanism, in which the silicate material forms inorganic walls between ordered surfactant micelles.

15,125 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis, characterization, and proposed mechanism of formation of a new family of silicatelaluminosilicate mesoporous molecular sieves designated as M41S is described.
Abstract: The synthesis, characterization, and proposed mechanism of formation of a new family of silicatelaluminosilicate mesoporous molecular sieves designated as M41S is described. MCM-41, one member of this family, exhibits a hexagonal arrangement of uniform mesopores whose dimensions may be engineered in the range of - 15 A to greater than 100 A. Other members of this family, including a material exhibiting cubic symmetry, have ken synthesized. The larger pore M41S materials typically have surface areas above 700 m2/g and hydrocarbon sorption capacities of 0.7 cc/g and greater. A templating mechanism (liquid crystal templating-LCT) in which surfactant liquid crystal structures serve as organic templates is proposed for the formation of these materials. In support of this templating mechanism, it was demonstrated that the structure and pore dimensions of MCM-41 materials are intimately linked to the properties of the surfactant, including surfactant chain length and solution chemistry. The presence of variable pore size MCM-41, cubic material, and other phases indicates that M41S is an extensive family of materials.

10,349 citations

Journal Article
01 Jan 2001-Nature
TL;DR: In this paper, the authors look into the historical background, and present status and development prospects for photoelectrochemical cells, based on nanocrystalline materials and conducting polymer films.
Abstract: Until now, photovoltaics - the conversion of sunlight to electrical power - has been dominated by solid-state junction devices, often made of silicon. But this dominance is now being challenged by the emergence of a new generation of photovoltaic cells, based, for example, on nanocrystalline materials and conducting polymer films. These offer the prospect of cheap fabrication together with other attractive features, such as flexibility. The phenomenal recent progress in fabricating and characterizing nanocrystalline materials has opened up whole new vistas of opportunity. Contrary to expectation, some of the new devices have strikingly high conversion efficiencies, which compete with those of conventional devices. Here I look into the historical background, and present status and development prospects for this new generation of photoelectrochemical cells.

8,305 citations

Journal ArticleDOI
TL;DR: In this article, the resonance theory of Forster, which involves only allowed transitions, is extended to include transfer by means of forbidden transitions which, it is concluded, are responsible for the transfer in all inorganic systems yet investigated.
Abstract: The term ``sensitized luminescence'' in crystalline phosphors refers to the phenomenon whereby an impurity (activator, or emitter) is enabled to luminesce upon the absorption of light in a different type of center (sensitizer, or absorber) and upon the subsequent radiationless transfer of energy from the sensitizer to the activator The resonance theory of Forster, which involves only allowed transitions, is extended to include transfer by means of forbidden transitions which, it is concluded, are responsible for the transfer in all inorganic systems yet investigated The transfer mechanisms of importance are, in order of decreasing strength, the overlapping of the electric dipole fields of the sensitizer and the activator, the overlapping of the dipole field of the sensitizer with the quadrupole field of the activator, and exchange effects These mechanisms will give rise to ``sensitization'' of about 103−104, 102, and 30 lattice sites surrounding each sensitizer in typical systems The dependence of transfer efficiency upon sensitizer and activator concentrations and on temperature are discussed Application is made of the theory to experimental results on inorganic phosphors, and further experiments are suggested

7,635 citations