scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hybrid Organic−Inorganic Polyoxometalate Compounds: From Structural Diversity to Applications

28 Jul 2010-Chemical Reviews (American Chemical Society)-Vol. 110, Iss: 10, pp 6009-6048
TL;DR: Polyoxometalates (POMs) are discrete anionic metaloxygen clusters which can be regarded as soluble oxide fragments which play a great role in various areas ranging from catalysis, medicine, electrochemistry, photochromism,5 to magnetism.
Abstract: Polyoxometalates (POMs) are discrete anionic metaloxygen clusters which can be regarded as soluble oxide fragments. They exhibit a great diversity of sizes, nuclearities, and shapes. They are built from the connection of {MOx} polyhedra, M being a d-block element in high oxidation state, usually VIV,V, MoVI, or WVI.1 While these species have been known for almost two centuries, they still attract much interest partly based on their large domains of applications. They play a great role in various areas ranging from catalysis,2 medicine,3 electrochemistry,4 photochromism,5 to magnetism.6 This palette of applications is intrinsically due to the combination of their added value properties (redox properties, large sizes, high negative charges, nucleophilicity...). Parallel to this domain, the organic-inorganic hybrids area has followed a similar expansion during the last 10 years. The concept of organic-inorganic hybrid materials * To whom correspondence should be addressed. E-mail: dolbecq@ chimie.uvsq.fr. Chem. Rev. 2010, 110, 6009–6048 6009
Citations
More filters
Journal ArticleDOI
TL;DR: This review provides an overview of the significant advances in the development of diverse MOF composites reported till now with special emphases on the synergistic effects and applications of the composites.
Abstract: Metal–organic frameworks (MOFs), also known as porous coordination polymers (PCPs), synthesized by assembling metal ions with organic ligands have recently emerged as a new class of crystalline porous materials. The amenability to design as well as fine-tunable and uniform pore structures makes them promising materials for a variety of applications. Controllable integration of MOFs and functional materials is leading to the creation of new multifunctional composites/hybrids, which exhibit new properties that are superior to those of the individual components through the collective behavior of the functional units. This is a rapidly developing interdisciplinary research area. This review provides an overview of the significant advances in the development of diverse MOF composites reported till now with special emphases on the synergistic effects and applications of the composites. The most widely used and successful strategies for composite synthesis are also presented.

1,738 citations

Journal ArticleDOI
TL;DR: This review presents recent developments in porous POM-based MOF materials, including their classification, synthesis strategies, and applications, especially in the field of catalysis.
Abstract: Polyoxometalate (POM)-based metal–organic framework (MOF) materials contain POM units and generally generate MOF materials with open networks. POM-based MOF materials, which utilize the advantages of both POMs and MOFs, have received increasing attention, and much effort has been devoted to their preparation and relevant applications over the past few decades. They have good prospects in catalysis owing to the electronic and physical properties of POMs that are tunable by varying constituent elements. In this review, we present recent developments in porous POM-based MOF materials, including their classification, synthesis strategies, and applications, especially in the field of catalysis.

768 citations

Journal ArticleDOI
TL;DR: This critical review focuses on the use of POM hybrids in selected fields of applications such as catalysis, energy conversion and molecular nanosciences and endeavor to discuss the impact of the covalent approach compared to the electrostatic one.
Abstract: Polyoxometalates (POMs) have remarkable properties and a great deal of potential to meet contemporary societal demands regarding health, environment, energy and information technologies. However, implementation of POMs in various functional architectures, devices or materials requires a processing step. Most developments have considered the exchange of POM counterions in an electrostatically driven approach: immobilization of POMs on electrodes and other surfaces including oxides, embedding in polymers, incorporation into Layer-by-Layer assemblies or Langmuir–Blodgett films and hierarchical self-assembly of surfactant-encapsulated POMs have thus been thoroughly investigated. Meanwhile, the field of organic–inorganic POM hybrids has expanded and offers the opportunity to explore the covalent approach for the organization or immobilization of POMs. In this critical review, we focus on the use of POM hybrids in selected fields of applications such as catalysis, energy conversion and molecular nanosciences and we endeavor to discuss the impact of the covalent approach compared to the electrostatic one. The synthesis of organic–inorganic POM hybrids starting from bare POMs, that is the direct functionalization of POMs, is well documented and reliable and efficient synthetic procedures are available. However, as the complexity of the targeted functional system increases a multi-step strategy relying on the post-functionalization of preformed hybrid POM platforms could prove more appealing. In the second part of this review, we thus survey the synthetic methodologies of post-functionalization of POMs and critically discuss the opportunities it offers compared to direct functionalization.

743 citations

Journal ArticleDOI
TL;DR: This critical review summarizes recent progress on POM-based molecular and composite materials, and particularly highlights the emerging areas that are closely related to surface, electronic, energy, environment, life science, etc.
Abstract: Polyoxometalates (POMs) are a subset of metal oxides with unique physical and chemical properties, which can be reliably modified through various techniques and methods to develop sophisticated materials and devices. In parallel with the large number of new crystal structures reported in the literature, the application of these POMs towards multifunctional materials has attracted considerable attention. This critical review summarizes recent progress on POM-based molecular and composite materials, and particularly highlights the emerging areas that are closely related to surface, electronic, energy, environment, life science, etc. (171 references).

733 citations

Journal ArticleDOI
TL;DR: It is shown that it is possible to construct complex chemical systems based upon polyoxometalates, manipulating the templating/self Templating rules to exhibit emergent processes from the molecular to the macroscopic scale.
Abstract: Polyoxometalates are clusters of metal-oxide units, comprising a large diversity of nanoscale structures, and have many common building blocks; in fact polyoxometalate clusters are perhaps the largest non-biologically derived molecules structurally characterised. Not only can polyoxometalates have gigantic nanoscale molecular structures, but they also a have a vast array of physical properties, many of which can be specifically ‘engineered-in’. Here we describe how building block libraries of polyoxometalates can be used to construct systems with important catalytic, electronic, and structural properties. We also show that it is possible to construct complex chemical systems based upon polyoxometalates, manipulating the templating/self templating rules to exhibit emergent processes from the molecular to the macroscopic scale.

724 citations

References
More filters
Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Abstract: The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.

8,013 citations

Journal ArticleDOI
TL;DR: A novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported, and the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1, 3-dipoles entering the reaction.
Abstract: The cycloaddition of azides to alkynes is one of the most important synthetic routes to 1H-[1,2,3]-triazoles. Here a novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported. Primary, secondary, and tertiary alkyl azides, aryl azides, and an azido sugar were used successfully in the copper(I)-catalyzed cycloaddition producing diversely 1,4-substituted [1,2,3]-triazoles in peptide backbones or side chains. The reaction conditions were fully compatible with solid-phase peptide synthesis on polar supports. The copper(I) catalysis is mild and efficient (>95% conversion and purity in most cases) and furthermore, the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1,3-dipoles entering the reaction. Novel Fmoc-protected amino azides derived from Fmoc-amino alcohols were prepared by the Mitsunobu reaction.

7,397 citations

Journal ArticleDOI
18 Jan 2002-Science
TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Abstract: A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups –Br, –NH2, –OC3H7, –OC5H11, –C2H4, and –C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.

6,922 citations