scispace - formally typeset
Journal ArticleDOI

Hybrid structure based on no-core and graded-index multimode fibers as saturable absorber for a self-starting mode-locked Yb-doped fiber laser

20 Aug 2020-Applied Optics (The Optical Society)-Vol. 59, Iss: 24, pp 7357-7363

TL;DR: The results show that the NCF-GIMF-based SA can be used as an effective photonic device for high energy wave breaking free pulse generation.

AbstractWe demonstrate an all-fiber ytterbium (Yb)-doped mode-locked oscillator using a hybrid structure based on no-core fiber graded-index multimode fiber (NCF-GIMF) as the saturable absorber (SA). The proposed SA exhibits unique characteristics such as large-power tolerance, high modulation depth of 24.7%, and low saturation intensity of 11.01MW/cm2, which help to achieve a stable mode-locking operation. The all-normal and self-starting oscillator generates stable ultrafast pulses with a repetition rate of 21.35 MHz, pulse energy/average output power of 120 pJ/2.7 mW, and a pulse duration of 2.4 ps at a central wavelength of 1034.2 nm. The output pulses are then dechirped to 300 fs using an external grating compressor and possess high stability with a radio frequency spectrum of 58 dB. These results show that the NCF-GIMF-based SA can be used as an effective photonic device for high energy wave breaking free pulse generation.

...read more


References
More filters
Journal ArticleDOI
TL;DR: Self-similar propagation of ultrashort, parabolic pulses in a laser resonator is observed theoretically and experimentally, constituting a new type of pulse shaping in mode-locked lasers.
Abstract: Self-similar propagation of ultrashort, parabolic pulses in a laser resonator is observed theoretically and experimentally. This constitutes a new type of pulse shaping in mode-locked lasers: in contrast to the well-known static (solitonlike) and breathing (dispersion-managed soliton) pulse evolutions, asymptotic solutions to the nonlinear wave equation that governs pulse propagation in most of the laser cavity are observed. Stable self-similar pulses exist with energies much greater than can be tolerated in solitonlike pulse shaping, and this has implications for practical lasers.

781 citations

Journal ArticleDOI
TL;DR: In this paper, essential components and operation regimes of ultrafast fiber laser systems are reviewed, as well as their use in various applications, including industrial, medical and purely scientific applications.
Abstract: Ultrafast fibre lasers are an important optical system with industrial, medical and purely scientific applications. Essential components and the operation regimes of ultrafast fibre laser systems are reviewed, as are their use in various applications.

615 citations

Journal ArticleDOI
TL;DR: This work may constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics.
Abstract: By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potential y give some new insights into two-dimensional layered materials related photonics.

385 citations

Journal ArticleDOI
TL;DR: In this article, a ring-cavity thulium fiber laser with a single-wall carbon nanotube absorber was used in transmission, achieving an average output power of 3.4 mW.
Abstract: We report a ring-cavity thulium fiber laser mode locked with a single-wall carbon nanotube absorber used in transmission. A carboxymethyl cellulose polymer film with incorporated carbon nanotubes synthesized by the arc discharge method has an absorption coinciding with in the amplification bandwidth of a Tm-doped fiber. This laser is pumped by an erbium fiber laser at 1.57 μm wavelength and produces a 37 MHz train of mode-locked 1.32 ps pulses at 1.93 μm wavelength with an average output power of 3.4 mW.

363 citations

Journal ArticleDOI
TL;DR: An embedded fiber-taper saturable absorber is proposed and demonstrated based on a fiber taper embedded in a carbon nanotube/polymer composite and an all-fiber mode-locked ring laser is built.
Abstract: We propose and demonstrate a new saturable absorber based on a fiber taper embedded in a carbon nanotube/polymer composite. Greater than a 10% reduction in absorption (due to saturation) is directly measured for our saturable absorber. Using an embedded fiber-taper saturable absorber, we built an all-fiber mode-locked ring laser, which produces 594 fs/1.7 nJ pulses with a repetition rate of 13.3 MHz.

268 citations