scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hydrodynamics of core-collapse supernovae and their progenitors

TL;DR: In this paper, the authors review the current understanding of multi-dimensional fluid flow in core-collapse supernovae and their progenitors and discuss recent advances and open questions in theory and simulations.
Abstract: Multi-dimensional fluid flow plays a paramount role in the explosions of massive stars as core-collapse supernovae. In recent years, three-dimensional (3D) simulations of these phenomena have matured significantly. Considerable progress has been made towards identifying the ingredients for shock revival by the neutrino-driven mechanism, and successful explosions have already been obtained in a number of self-consistent 3D models. These advances also bring new challenges, however. Prompted by a need for increased physical realism and meaningful model validation, supernova theory is now moving towards a more integrated view that connects multi-dimensional phenomena in the late convective burning stages prior to collapse, the explosion engine, and mixing instabilities in the supernova envelope. Here we review our current understanding of multi-D fluid flow in core-collapse supernovae and their progenitors. We start by outlining specific challenges faced by hydrodynamic simulations of core-collapse supernovae and of the late convective burning stages. We then discuss recent advances and open questions in theory and simulations.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an extensive survey of the applications and examples where hydrodynamic instabilities play a central role, including solar prominences, ionospheric flows in space, supernovae, inertial fusion and pulsed-power experiments, pulsed detonation engines and Scramjets.

123 citations

Journal ArticleDOI
TL;DR: In this paper , the authors summarise the existing observational and theoretical knowledge of compact-binary coalescence rates, and present a survey of the existing observations and theoretical models of compact binary coalescence.
Abstract: Gravitational-wave detections are enabling measurements of the rate of coalescences of binaries composed of two compact objects -- neutron stars and/or black holes. The coalescence rate of binaries containing neutron stars is further constrained by electromagnetic observations, including Galactic radio binary pulsars and short gamma-ray bursts. Meanwhile, increasingly sophisticated models of compact objects merging through a variety of evolutionary channels produce a range of theoretically predicted rates. Rapid improvements in instrument sensitivity, along with plans for new and improved surveys, make this an opportune time to summarise the existing observational and theoretical knowledge of compact-binary coalescence rates.

76 citations

01 Jan 2009
TL;DR: In this paper, the authors examined the stability of a standing shock wave within a spherical accretion flow onto a gravitating star, in the context of core-collapse supernova explosions.
Abstract: We examine the stability of a standing shock wave within a spherical accretion flow onto a gravitating star, in the context of core-collapse supernova explosions. Our focus is on the effect of nuclear dissociation below the shock on the linear growth, and nonlinear saturation, of nonradial oscillations of the shocked fluid. We combine two-dimensional, time-dependent hydrodynamic simulations using FLASH2.5 with a solution to the linear eigenvalue problem, and demonstrate the consistency of the two approaches. Previous studies of this "standing accretion shock instability" (SASI) have focused either on zero-energy accretion flows without nuclear dissociation, or made use of a detailed finite-temperature nuclear equation of state and included strong neutrino heating. Our main goal in this and subsequent papers is to introduce equations of state of increasing complexity, in order to isolate the various competing effects. In this work, we employ an ideal gas equation of state with a constant rate of nuclear dissociation below the shock, and do not include neutrino heating. We find that a negative Bernoulli parameter below the shock significantly lowers the real frequency, growth rate, and saturation amplitude of the SASI. A decrease in the adiabatic index has similar effects. The nonlinear development of the instability is characterized by an expansion of the shock driven by turbulent kinetic energy at nearly constant internal energy. Our results also provide further insight into the instability mechanism: the rate of growth of a particular mode is fastest when the radial advection time from the shock to the accretor overlaps with the period of a standing lateral sound wave. The fastest-growing mode can therefore be modified by nuclear dissociation.

51 citations

References
More filters
Book
01 Jan 2009
TL;DR: In this article, the authors present references and index Reference Record created on 2004-09-07, modified on 2016-08-08 and a reference record created on 2003-09 -07.
Abstract: Note: Includes references and index Reference Record created on 2004-09-07, modified on 2016-08-08

5,777 citations

Journal ArticleDOI
TL;DR: A finite-size particle scheme for the numerical solution of two-and three-dimensional gas dynamical problems of astronomical interest is described and tested in this article, which is then applied to the fission problem for optically thick protostars.
Abstract: A finite-size particle scheme for the numerical solution of two- and three-dimensional gas dynamical problems of astronomical interest is described and tested. The scheme is then applied to the fission problem for optically thick protostars. Results are given, showing the evolution of one such protostar from an initial state as a single, rotating star to a final state as a triple system whose components contain 60% of the original mass. The decisiveness of this numerical test of the fission hypothesis and its relevance to observed binaries are briefly discussed.

5,508 citations

Journal ArticleDOI
TL;DR: In this article, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field.
Abstract: A broad class of astronomical accretion disks is presently shown to be dynamically unstable to axisymmetric disturbances in the presence of a weak magnetic field, an insight with consequently broad applicability to gaseous, differentially-rotating systems. In the first part of this work, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate, which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field. Fluid motions associated with the instability directly generate both poloidal and toroidal field components. In the second part of this investigation, the scaling relation between the instability's wavenumber and the Alfven velocity is demonstrated, and the independence of the maximum growth rate from magnetic field strength is confirmed.

4,265 citations