scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hydrogen bond-directed cocrystallization and molecular recognition properties of diarylureas

About: This article is published in Journal of the American Chemical Society.The article was published on 1990-11-01. It has received 459 citations till now. The article focuses on the topics: Hydrogen bond & Molecular recognition.
Citations
More filters
Journal ArticleDOI
TL;DR: Concentrating on recent advances, this article covers industrial aspects, inorganic materials, organic synthesis, cocrystallisation, pharmaceutical aspects, metal complexes, supramolecular aspects and characterization methods.
Abstract: The aim of this critical review is to provide a broad but digestible overview of mechanochemical synthesis, i.e. reactions conducted by grinding solid reactants together with no or minimal solvent. Although mechanochemistry has historically been a sideline approach to synthesis it may soon move into the mainstream because it is increasingly apparent that it can be practical, and even advantageous, and because of the opportunities it provides for developing more sustainable methods. Concentrating on recent advances, this article covers industrial aspects, inorganic materials, organic synthesis, cocrystallisation, pharmaceutical aspects, metal complexes (including metal–organic frameworks), supramolecular aspects and characterization methods. The historical development, mechanistic aspects, limitations and opportunities are also discussed (314 references).

2,102 citations

Journal ArticleDOI
TL;DR: This review documents the structural and mechanistic features that contribute to high enantioselectivity in hydrogen-bond-mediated catalytic processes in small-molecule, synthetic catalyst systems.
Abstract: Hydrogen bonding is responsible for the structure of much of the world around us. The unusual and complex properties of bulk water, the ability of proteins to fold into stable three-dimensional structures, the fidelity of DNA base pairing, and the binding of ligands to receptors are among the manifestations of this ubiquitous noncovalent interaction. In addition to its primacy as a structural determinant, hydrogen bonding plays a crucial functional role in catalysis. Hydrogen bonding to an electrophile serves to decrease the electron density of this species, activating it toward nucleophilic attack. This principle is employed frequently by Nature's catalysts, enzymes, for the acceleration of a wide range of chemical processes. Recently, organic chemists have begun to appreciate the tremendous potential offered by hydrogen bonding as a mechanism for electrophile activation in small-molecule, synthetic catalyst systems. In particular, chiral hydrogen-bond donors have emerged as a broadly applicable class of catalysts for enantioselective synthesis. This review documents these advances, emphasizing the structural and mechanistic features that contribute to high enantioselectivity in hydrogen-bond-mediated catalytic processes.

1,580 citations

Journal ArticleDOI
TL;DR: Michael reaction of malonates to nitrooleolefins with chiral bifunctional organocatalysts, bearing both a thiourea and tertiary amino group, afforded Michael adducts with high yields and enantioselectivities.
Abstract: Michael reaction of malonates to nitroolefins with chiral bifunctional organocatalysts, bearing both a thiourea and tertiary amino group, afforded Michael adducts with high yields and enantioselectivities (up to 95%, up to 93% ee).

1,202 citations

Journal ArticleDOI
TL;DR: This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design.
Abstract: How do molecules aggregate in solution, and how do these aggregates consolidate themselves in crystals? What is the relationship between the structure of a molecule and the structure of the crystal it forms? Why do some molecules adopt more than one crystal structure? Why do some crystal structures contain solvent? How does one design a crystal structure with a specified topology of molecules, or a specified coordination of molecules and/or ions, or with a specified property? What are the relationships between crystal structures and properties for molecular crystals? These are some of the questions that are being addressed today by the crystal engineering community, a group that draws from the larger communities of organic, inorganic, and physical chemists, crystallographers, and solid state scientists. This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design. It also provides a look to the future from the viewpoint of the author, and indicates some directions in which this field might be moving.

1,148 citations