scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions

01 Feb 2013-Carbon (Pergamon)-Vol. 52, Iss: 52, pp 583-589
TL;DR: In this article, a simple, one-step hydrothermal method for the synthesis of highly fluorescent carbon nanoparticles (F-CNPs) with a high quantum yield (68%) and good photostability was developed.
About: This article is published in Carbon.The article was published on 2013-02-01. It has received 466 citations till now. The article focuses on the topics: Hydrothermal synthesis & Aqueous solution.
Citations
More filters
Journal ArticleDOI
TL;DR: The progress in the research and development of CQDs is reviewed with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.
Abstract: Fluorescent carbon nanoparticles or carbon quantum dots (CQDs) are a new class of carbon nanomaterials that have emerged recently and have garnered much interest as potential competitors to conventional semiconductor quantum dots. In addition to their comparable optical properties, CQDs have the desired advantages of low toxicity, environmental friendliness low cost and simple synthetic routes. Moreover, surface passivation and functionalization of CQDs allow for the control of their physicochemical properties. Since their discovery, CQDs have found many applications in the fields of chemical sensing, biosensing, bioimaging, nanomedicine, photocatalysis and electrocatalysis. This article reviews the progress in the research and development of CQDs with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.

3,514 citations

Journal ArticleDOI
TL;DR: Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions and possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration.
Abstract: The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration. They have potential to be used for pH sensors, cell imaging, solar cells, and photocatalysis.

759 citations

Journal ArticleDOI
TL;DR: Carbon dots represent an emerging class of fluorescent materials and provide a broad application potential in various fields of biomedicine and optoelectronics as discussed by the authors, and the applicability of carbon dots as components of light emitting diodes, which include carbon dot based electroluminescence, optical downconversion, and hybrid plasmonic devices.

745 citations

Journal ArticleDOI
TL;DR: The authors suggest that with the potential of these nanomaterials in sensing more research is needed on understanding their optical properties and why the synthetic methods influence their properties so much, into methods of surface functionalization that provide greater selectivity in sensing and into new sensing concepts that utilise the virtues of these nano-materials.
Abstract: Carbon and graphene quantum dots (CQDs and GQDs), known as zero-dimensional (0D) nanomaterials, have been attracting increasing attention in sensing and bioimaging. Their unique electronic, fluores...

570 citations

Journal ArticleDOI
TL;DR: A novel strategy to fabricate fluorescent boronic acid modified carbon dots (C-dots) for nonenzymatic blood glucose sensing applications by one-step hydrothermal carbonization, using phenylboronic acid as the sole precursor is presented.
Abstract: In this paper, we have presented a novel strategy to fabricate fluorescent boronic acid modified carbon dots (C-dots) for nonenzymatic blood glucose sensing applications. The functionalized C-dots are obtained by one-step hydrothermal carbonization, using phenylboronic acid as the sole precursor. Compared with conventional two-step fabrication of nanoparticle-based sensors, the present “synthesis-modification integration” strategy is simpler and more efficient. The added glucose selectively leads to the assembly and fluorescence quenching of the C-dots. Such fluorescence responses can be used for well quantifying glucose in the range of 9–900 μM, which is 10–250 times more sensitive than that of previous boronic acid based fluorescent nanosensing systems. Due to “inert” surface, the C-dots can well resist the interferences from various biomolecules and exhibit excellent selectivity. The proposed sensing system has been successfully used for the assay of glucose in human serum. Due to simplicity and effect...

462 citations

References
More filters
Book
01 Jan 1978
TL;DR: This encyclopedic work includes authoritative coverage of atomic and molecular structure, organic chemistry (revised), inorganic, analytical, and electro- chemistry, mathematics as applied to chemistry, and more.
Abstract: Lange's Handbook has served as a leading source of reliable chemical information and data for chemists, engineers, and other technical specialists since l934. This encyclopedic work includes authoritative coverage of atomic and molecular structure, organic chemistry (revised), inorganic, analytical, and electro- chemistry, mathematics as applied to chemistry, and more. It also includes nomenclature consistent with recommendations of the IUPAC Commission rules.

7,848 citations

Journal ArticleDOI
28 Jan 2005-Science
TL;DR: The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
Abstract: Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have farreaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.

7,499 citations


"Hydrothermal synthesis of highly fl..." refers background in this paper

  • ...[1] Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al....

    [...]

Journal ArticleDOI
TL;DR: This Review summarize recent advances in the synthesis and characterization of C-dots and speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.
Abstract: Similar to its popular older cousins the fullerene, the carbon nanotube, and graphene, the latest form of nanocarbon, the carbon nanodot, is inspiring intensive research efforts in its own right. These surface-passivated carbonaceous quantum dots, so-called C-dots, combine several favorable attributes of traditional semiconductor-based quantum dots (namely, size- and wavelength-dependent luminescence emission, resistance to photobleaching, ease of bioconjugation) without incurring the burden of intrinsic toxicity or elemental scarcity and without the need for stringent, intricate, tedious, costly, or inefficient preparation steps. C-dots can be produced inexpensively and on a large scale (frequently using a one-step pathway and potentially from biomass waste-derived sources) by many approaches, ranging from simple candle burning to in situ dehydration reactions to laser ablation methods. In this Review, we summarize recent advances in the synthesis and characterization of C-dots. We also speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.

3,991 citations


"Hydrothermal synthesis of highly fl..." refers background in this paper

  • ...2 – (A) FT-IR spectra of F-CNPs (a) and sod surface energy traps of F-CNPs [9]....

    [...]

Journal ArticleDOI
TL;DR: This work found that CdSe-core QDs were indeed acutely toxic under certain conditions and modulated by processing parameters during synthesis, exposure to ultraviolet light, and surface coatings, and suggests that cytotoxicity correlates with the liberation of free Cd2+ ions due to deterioration of the Cd Se lattice.
Abstract: With their bright, photostable fluorescence, semiconductor quantum dots (QDs) show promise as alternatives to organic dyes for biological labeling. Questions about their potential cytotoxicity, however, remain unanswered. While cytotoxicity of bulk cadmium selenide (CdSe) is well documented, a number of groups have suggested that CdSe QDs are cytocompatible, at least with some immortalized cell lines. Using primary hepatocytes as a liver model, we found that CdSe-core QDs were indeed acutely toxic under certain conditions. Specifically, we found that the cytotoxicity of QDs was modulated by processing parameters during synthesis, exposure to ultraviolet light, and surface coatings. Our data further suggest that cytotoxicity correlates with the liberation of free Cd2+ ions due to deterioration of the CdSe lattice. When appropriately coated, CdSe-core QDs can be rendered nontoxic and used to track cell migration and reorganization in vitro. Our results provide information for design criteria for the use of ...

3,236 citations


"Hydrothermal synthesis of highly fl..." refers background in this paper

  • ...ied owing to their excellent photostability and low toxicity [5,6]....

    [...]

Journal ArticleDOI
Ron C. Hardman1
TL;DR: Although they offer potentially invaluable societal benefits, quantum dots may also pose risks to human health and the environment under certain conditions, and it is within this context that the need for understanding the potentially harmful side effects of these materials becomes clear.
Abstract: As a growing applied science, nanotechnology has considerable global socioeconomic value, and the benefits afforded by nanoscale materials and processes are expected to have significant impacts on almost all industries and all areas of society. A diverse array of engineered nanoscale products and processes have emerged [e.g., carbon nanotubes, fullerene derivatives, and quantum dots (QDs)], with widespread applications in fields such as medicine, plastics, energy, electronics, and aerospace. With the nanotechnology economy estimated to be valued at $1 trillion by 2012, the prevalence of these materials in society will be increasing, as will the likelihood of exposures. Importantly, the vastness and novelty of the nanotechnology frontier leave many areas unexplored, or underexplored, such as the potential adverse human health effects resulting from exposure to novel nanomaterials. It is within this context that the need for understanding the potentially harmful side effects of these materials becomes clear. The reviewed literature suggests several key points: Not all QDs are alike; engineered QDs cannot be considered a uniform group of substances. QD absorption, distribution, metabolism, excretion, and toxicity depend on multiple factors derived from both inherent physicochemical properties and environmental conditions; QD size, charge, concentration, outer coating bioactivity (capping material and functional groups), and oxidative, photolytic, and mechanical stability have each been implicated as determining factors in QD toxicity. Although they offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging, QDs may also pose risks to human health and the environment under certain conditions.

2,092 citations