scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Hyper-class augmented and regularized deep learning for fine-grained image classification

TL;DR: A systematic framework of learning a deep CNN that addresses the challenges from two new perspectives by identifying easily annotated hyper-classes inherent in the fine-grained data and acquiring a large number of hyper-class-labeled images from readily available external sources is proposed.
Abstract: Deep convolutional neural networks (CNN) have seen tremendous success in large-scale generic object recognition. In comparison with generic object recognition, fine-grained image classification (FGIC) is much more challenging because (i) fine-grained labeled data is much more expensive to acquire (usually requiring domain expertise); (ii) there exists large intra-class and small inter-class variance. Most recent work exploiting deep CNN for image recognition with small training data adopts a simple strategy: pre-train a deep CNN on a large-scale external dataset (e.g., ImageNet) and fine-tune on the small-scale target data to fit the specific classification task. In this paper, beyond the fine-tuning strategy, we propose a systematic framework of learning a deep CNN that addresses the challenges from two new perspectives: (i) identifying easily annotated hyper-classes inherent in the fine-grained data and acquiring a large number of hyper-class-labeled images from readily available external sources (e.g., image search engines), and formulating the problem into multitask learning; (ii) a novel learning model by exploiting a regularization between the fine-grained recognition model and the hyper-class recognition model. We demonstrate the success of the proposed framework on two small-scale fine-grained datasets (Stanford Dogs and Stanford Cars) and on a large-scale car dataset that we collected.

Content maybe subject to copyright    Report

Citations
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: A broad survey of the recent advances in convolutional neural networks can be found in this article, where the authors discuss the improvements of CNN on different aspects, namely, layer design, activation function, loss function, regularization, optimization and fast computation.

3,125 citations

Proceedings Article
05 Dec 2016
TL;DR: This paper proposes a new metric learning objective called multi-class N-pair loss, which generalizes triplet loss by allowing joint comparison among more than one negative examples and reduces the computational burden of evaluating deep embedding vectors via an efficient batch construction strategy using only N pairs of examples.
Abstract: Deep metric learning has gained much popularity in recent years, following the success of deep learning. However, existing frameworks of deep metric learning based on contrastive loss and triplet loss often suffer from slow convergence, partially because they employ only one negative example while not interacting with the other negative classes in each update. In this paper, we propose to address this problem with a new metric learning objective called multi-class N-pair loss. The proposed objective function firstly generalizes triplet loss by allowing joint comparison among more than one negative examples - more specifically, N-1 negative examples - and secondly reduces the computational burden of evaluating deep embedding vectors via an efficient batch construction strategy using only N pairs of examples, instead of (N+1) x N. We demonstrate the superiority of our proposed loss to the triplet loss as well as other competing loss functions for a variety of tasks on several visual recognition benchmark, including fine-grained object recognition and verification, image clustering and retrieval, and face verification and identification.

1,454 citations


Cites background or methods from "Hyper-class augmented and regulariz..."

  • ...• Car-333 [29] dataset is composed of 164, 863 images of cars from 333 model categories collected from the internet....

    [...]

  • ...Following the experimental protocol [29], we split the dataset into 157, 023 images for training and 7, 840 for testing....

    [...]

Posted Content
TL;DR: This paper details the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation, and introduces various applications of convolutional neural networks in computer vision, speech and natural language processing.
Abstract: In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging on the rapid growth in the amount of the annotated data and the great improvements in the strengths of graphics processor units, the research on convolutional neural networks has been emerged swiftly and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. We detailize the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation. Besides, we also introduce various applications of convolutional neural networks in computer vision, speech and natural language processing.

1,302 citations

Journal ArticleDOI
TL;DR: This paper mainly focus on the application of deep learning architectures to three major applications, namely (i) wild animal detection, (ii) small arm detection and (iii) human being detection.
Abstract: Deep learning has developed as an effective machine learning method that takes in numerous layers of features or representation of the data and provides state-of-the-art results. The application of deep learning has shown impressive performance in various application areas, particularly in image classification, segmentation and object detection. Recent advances of deep learning techniques bring encouraging performance to fine-grained image classification which aims to distinguish subordinate-level categories. This task is extremely challenging due to high intra-class and low inter-class variance. In this paper, we provide a detailed review of various deep architectures and model highlighting characteristics of particular model. Firstly, we described the functioning of CNN architectures and its components followed by detailed description of various CNN models starting with classical LeNet model to AlexNet, ZFNet, GoogleNet, VGGNet, ResNet, ResNeXt, SENet, DenseNet, Xception, PNAS/ENAS. We mainly focus on the application of deep learning architectures to three major applications, namely (i) wild animal detection, (ii) small arm detection and (iii) human being detection. A detailed review summary including the systems, database, application and accuracy claimed is also provided for each model to serve as guidelines for future work in the above application areas.

435 citations

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"Hyper-class augmented and regulariz..." refers background in this paper

  • ...In ImageNet 2014 Challenge, [31] and [33] designed very deep CNN architectures and achieved impressive results....

    [...]

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations