scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hyper-expanded interlayer separations in superconducting barium intercalates of FeSe.

TL;DR: The values of Tc are primarily dependent on Ba content, and are further modulated by the interlayer spacing through facile intercalation and deintercalation of ammonia.
About: This article is published in Chemical Communications.The article was published on 2015-04-09 and is currently open access. It has received 26 citations till now. The article focuses on the topics: Intercalation (chemistry) & Barium.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties, including charge doping, structural distortions, and Fermi surface reconstruction.

59 citations


Cites background from "Hyper-expanded interlayer separatio..."

  • ...ing the intercalation of cations via liquid ammonia.[133] Initially, a fast intercalation occurs at 200 K with a char-...

    [...]

Journal ArticleDOI
TL;DR: It is confirmed that strong phase fluctuation is an important character in the 2D iron-basedsuperconductors as widely observed in high-T_{c} cuprate superconductors.
Abstract: Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range phase coherence. In conventional superconductors, the two quantum phenomena generally take place simultaneously, while in the underdoped high- ${T}_{c}$ cuprate superconductors, the electron pairing occurs at higher temperature than the long-range phase coherence. Recently, whether electron pairing is also prior to long-range phase coherence in single-layer FeSe film on ${\mathrm{SrTiO}}_{3}$ substrate is under debate. Here, by measuring Knight shift and nuclear spin-lattice relaxation rate, we unambiguously reveal a pseudogap behavior below ${T}_{p}\ensuremath{\sim}60\text{ }\text{ }\mathrm{K}$ in two kinds of layered FeSe-based superconductors with quasi2D nature. In the pseudogap regime, a weak diamagnetic signal and a remarkable Nernst effect are also observed, which indicates that the observed pseudogap behavior is related to superconducting fluctuations. These works confirm that strong phase fluctuation is an important character in the 2D iron-based superconductors as widely observed in high-${T}_{c}$ cuprate superconductors.

48 citations

Journal ArticleDOI
01 Dec 2020

47 citations


Cites background from "Hyper-expanded interlayer separatio..."

  • ...Therefore, it is highly desirable to reduce the temperature used during the diffusion‐intercalation process.(70) Ayajan reported a new solid‐state reaction to synthesize homogeneous Cu‐intercalated TMD compounds with a high intercalant concentration at room temperature and atmospheric pressure....

    [...]

Journal ArticleDOI
TL;DR: The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations, and assumes the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, to be an intrinsic property of the system.
Abstract: Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A = K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Neel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce and summarize the latest advances in chemical intercalation and the role of these spacing layers in transition metal chalcogenides, and their relation to relevant properties.
Abstract: Transition metal chalcogenides (TMChs) have recently attracted a great deal of interest in the chemical and physical research fields. These compounds have a common crystal structure: they usually consist of two-dimensional or quasi-two-dimensional layers stacked along the direction perpendicular to the layers. The combination between layers is generally by van der Waals interaction or weak chemical bonding, making the layered chalcogenides potential hosts for intercalation. Alkali metals, alkaline earths, rare earths, and organic groups or compounds can be intercalated into the structure as spacing layers, resulting in a variety of new compounds and exhibiting interesting physical and chemical properties. In this review, we introduce and summarize the latest advances in chemical intercalation and the role of these spacing layers in TMChs, and their relation to relevant properties. Especially, we focus on the developments of chemical intercalation in Fe chalcogenide superconductors to understand the effect...

29 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the superconductivity of iron-based oxyarsenide Sm[O1-xFx]FeAs was reported, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6 K. This compound has the same crystal structure as LaOFeAs with shrunk crystal lattices.
Abstract: We report the superconductivity in iron-based oxyarsenide Sm[O1-xFx]FeAs, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6 K. This compound has the same crystal structure as LaOFeAs with shrunk crystal lattices, and becomes the superconductor with the highest critical temperature among all materials besides copper oxides up to now.

1,456 citations

Journal ArticleDOI
25 May 2008-Nature
TL;DR: Chen et al. as discussed by the authors reported the discovery of bulk superconductivity in the related compound SmFeAsO1-xF x, which has a ZrCuSiAs-type structure.
Abstract: The recently discovered layered rare-earth metal oxypnictides have reinvigorated research into high-temperature superconductivity. The first of these, found only a few months ago, had a transition temperature of 26 K. A recent paper in Nature reported an iron–arsenic-based material superconducting at 43 K with the application of pressure. Previously only copper oxides superconductors had beaten the 40 K barrier. Now Chen et al. report bulk superconductivity in the samarium–arsenide oxide SmFeAsO1−xFx with a transition temperature of 43 K without this pressure. A report on the discovery of bulk superconductivity in samarium-arsenide oxides SmFeAsO1−xFx with a transition temperature as high as 43 K. Since the discovery of high-transition-temperature (high-Tc) superconductivity in layered copper oxides, extensive effort has been devoted to exploring the origins of this phenomenon. A Tc higher than 40 K (about the theoretical maximum predicted from Bardeen–Cooper–Schrieffer theory1), however, has been obtained only in the copper oxide superconductors. The highest reported value for non-copper-oxide bulk superconductivity is Tc = 39 K in MgB2 (ref. 2). The layered rare-earth metal oxypnictides LnOFeAs (where Ln is La–Nd, Sm and Gd) are now attracting attention following the discovery of superconductivity at 26 K in the iron-based LaO1-xF x FeAs (ref. 3). Here we report the discovery of bulk superconductivity in the related compound SmFeAsO1-xF x , which has a ZrCuSiAs-type structure. Resistivity and magnetization measurements reveal a transition temperature as high as 43 K. This provides a new material base for studying the origin of high-temperature superconductivity.

1,325 citations

Journal ArticleDOI
15 May 2008-Nature
TL;DR: It is reported that increasing the pressure causes a steep increase in the onset Tc of F-doped LaOFeAs, to a maximum of ∼43 K at ∼4 GPa, which is the highest Tc reported to date.
Abstract: The hunt for new materials exhibiting high-temperature superconductivity is on again. A complex iron-based oxide, containing lanthanum and arsenic, was recently found to exhibit a transition temperature (Tc) of about 26 K when doped with fluoride ions. That's respectable, but far from the heights achieved in copper oxide superconductors. Now Takahashi et al. show that the application of around 40,000 atmospheres of pressure can raise the Tc of this material substantially, to about 43 K. This is the highest tc yet reported for a non-copper-based material. What is more, this record is unlikely to last for long: the complexity of 'iron oxypnictides' of this type offers considerable flexibility for chemical modification, and we can expect to hear of yet higher transition temperatures. This paper — and the prospect of a new wave of superconductor fever — is the subject of an Editorial in the 24 April issue of Nature (452, 914; 2008). The application of pressure can raise the superconducting transition temperature of oxypnictide (a pnicogen being a group V element) substantially, to a maximum value of about 43 K. This is the highest transition temperature yet reported for a non-copper-based material, but this record is unlikely to last for long: the material system offers considerable flexibility for chemical modification, and we can reasonably anticipate that this record will soon be superseded. The iron- and nickel-based layered compounds LaOFeP (refs 1, 2) and LaONiP (ref. 3) have recently been reported to exhibit low-temperature superconducting phases with transition temperatures Tc of 3 and 5 K, respectively. Furthermore, a large increase in the midpoint Tc of up to ∼26 K has been realized4 in the isocrystalline compound LaOFeAs on doping of fluoride ions at the O2- sites (LaO1-xFxFeAs). Experimental observations5,6 and theoretical studies7,8,9 suggest that these transitions are related to a magnetic instability, as is the case for most superconductors based on transition metals. In the copper-based high-temperature superconductors, as well as in LaOFeAs, an increase in Tc is often observed as a result of carrier doping in the two-dimensional electronic structure through ion substitution in the surrounding insulating layers, suggesting that the application of external pressure should further increase Tc by enhancing charge transfer between the insulating and conducting layers. The effects of pressure on these iron oxypnictide superconductors may be more prominent than those in the copper-based systems, because the As ion has a greater electronic polarizability, owing to the covalency of the Fe–As chemical bond, and, thus, is more compressible than the divalent O2- ion. Here we report that increasing the pressure causes a steep increase in the onset Tc of F-doped LaOFeAs, to a maximum of ∼43 K at ∼4 GPa. With the exception of the copper-based high-Tc superconductors, this is the highest Tc reported to date. The present result, together with the great freedom available in selecting the constituents of isocrystalline materials with the general formula LnOTMPn (Ln, Y or rare-earth metal; TM, transition metal; Pn, group-V, ‘pnicogen’, element), indicates that the layered iron oxypnictides are promising as a new material platform for further exploration of high-temperature superconductivity.

1,084 citations

Journal ArticleDOI
TL;DR: In this paper, the composition of the spacer layers present in iron-based superconductors is altered to increase the temperature below which they superconduct, and intercalating FeSe with molecular spacer layer is also shown to enhance the superconducting transition temperature.
Abstract: Altering the composition of the spacer layers present in iron-based superconductors is one strategy for increasing the temperature below which they superconduct. Now, intercalating FeSe with molecular spacer layers is also shown to enhance the superconducting transition temperature.

365 citations

Journal ArticleDOI
01 Mar 2012-Nature
TL;DR: It is reported that in the superconducting iron chalcogenides, a secondsuperconducting phase suddenly re-emerges above 11.5 GPa, after the Tc drops from the first maximum of 32 K at 1 GPa.
Abstract: Pressure has an essential role in the production(1) and control(2,3) of superconductivity in iron-based superconductors. Substitution of a large cation by a smaller rare-earth ion to simulate the pressure effect has raised the superconducting transition temperature T-c to a record high of 55 K in these materials(4,5). In the same way as T-c exhibits a bell-shaped curve of dependence on chemical doping, pressure-tuned T-c typically drops monotonically after passing the optimal pressure(1-3). Here we report that in the superconducting iron chalcogenides, a second superconducting phase suddenly re-emerges above 11.5 GPa, after the T-c drops from the first maximum of 32 K at 1 GPa. The T-c of the re-emerging superconducting phase is considerably higher than the first maximum, reaching 48.0-48.7 K for Tl0.6Rb0.4Fe1.67Se2, K0.8Fe1.7Se2 and K0.8Fe1.78Se2.

305 citations

Related Papers (5)