scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hyperspectral Image Classification Using Deep Pixel-Pair Features

TL;DR: Experimental results based on several hyperspectral image data sets demonstrate that the proposed pixel-pair method can achieve better classification performance than the conventional deep learning-based method.
Abstract: The deep convolutional neural network (CNN) is of great interest recently. It can provide excellent performance in hyperspectral image classification when the number of training samples is sufficiently large. In this paper, a novel pixel-pair method is proposed to significantly increase such a number, ensuring that the advantage of CNN can be actually offered. For a testing pixel, pixel-pairs, constructed by combining the center pixel and each of the surrounding pixels, are classified by the trained CNN, and the final label is then determined by a voting strategy. The proposed method utilizing deep CNN to learn pixel-pair features is expected to have more discriminative power. Experimental results based on several hyperspectral image data sets demonstrate that the proposed method can achieve better classification performance than the conventional deep learning-based method.
Citations
More filters
Journal ArticleDOI
TL;DR: The challenges of using deep learning for remote-sensing data analysis are analyzed, recent advances are reviewed, and resources are provided that hope will make deep learning in remote sensing seem ridiculously simple.
Abstract: Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization.

2,095 citations


Cites methods from "Hyperspectral Image Classification ..."

  • ...In [30], to allow a CNN to be appropriately trained using limited labeled data, the authors present a novel pixel-pair CNN to significantly augment the number of training samples....

    [...]

Journal ArticleDOI
TL;DR: An end-to-end spectral–spatial residual network that takes raw 3-D cubes as input data without feature engineering for hyperspectral image classification and achieves the state-of-the-art HSI classification accuracy in agricultural, rural–urban, and urban data sets.
Abstract: In this paper, we designed an end-to-end spectral–spatial residual network (SSRN) that takes raw 3-D cubes as input data without feature engineering for hyperspectral image classification. In this network, the spectral and spatial residual blocks consecutively learn discriminative features from abundant spectral signatures and spatial contexts in hyperspectral imagery (HSI). The proposed SSRN is a supervised deep learning framework that alleviates the declining-accuracy phenomenon of other deep learning models. Specifically, the residual blocks connect every other 3-D convolutional layer through identity mapping, which facilitates the backpropagation of gradients. Furthermore, we impose batch normalization on every convolutional layer to regularize the learning process and improve the classification performance of trained models. Quantitative and qualitative results demonstrate that the SSRN achieved the state-of-the-art HSI classification accuracy in agricultural, rural–urban, and urban data sets: Indian Pines, Kennedy Space Center, and University of Pavia.

1,105 citations


Cites background or methods from "Hyperspectral Image Classification ..."

  • ...The SSRN has a deeper structure than those of 3-D CNNs used in [21]–[24], and contains shortcut...

    [...]

  • ...Multiple papers have demonstrated that CNNs can deliver the state-of-the-art results using spatialized input for HSI classification [21]–[23]....

    [...]

  • ...significant amount of labeled data for training [21]....

    [...]

  • ...feature extractor was proposed in [21], which can learn discriminative representations from pixel pairs and use a voting strategy to smooth final classification maps....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic review of deep learning-based hyperspectral image classification literatures and compare several strategies for this topic, which can provide some guidelines for future studies on this topic.
Abstract: Hyperspectral image (HSI) classification has become a hot topic in the field of remote sensing. In general, the complex characteristics of hyperspectral data make the accurate classification of such data challenging for traditional machine learning methods. In addition, hyperspectral imaging often deals with an inherently nonlinear relation between the captured spectral information and the corresponding materials. In recent years, deep learning has been recognized as a powerful feature-extraction tool to effectively address nonlinear problems and widely used in a number of image processing tasks. Motivated by those successful applications, deep learning has also been introduced to classify HSIs and demonstrated good performance. This survey paper presents a systematic review of deep learning-based HSI classification literatures and compares several strategies for this topic. Specifically, we first summarize the main challenges of HSI classification which cannot be effectively overcome by traditional machine learning methods, and also introduce the advantages of deep learning to handle these problems. Then, we build a framework which divides the corresponding works into spectral-feature networks, spatial-feature networks, and spectral-spatial-feature networks to systematically review the recent achievements in deep learning-based HSI classification. In addition, considering the fact that available training samples in the remote sensing field are usually very limited and training deep networks require a large number of samples, we include some strategies to improve classification performance, which can provide some guidelines for future studies on this topic. Finally, several representative deep learning-based classification methods are conducted on real HSIs in our experiments.

761 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with.
Abstract: Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.

629 citations

Journal ArticleDOI
TL;DR: Rigorous and innovative methodologies are required for hyperspectral image (HSI) and signal processing and have become a center of attention for researchers worldwide.
Abstract: Recent advances in airborne and spaceborne hyperspectral imaging technology have provided end users with rich spectral, spatial, and temporal information. They have made a plethora of applications feasible for the analysis of large areas of the Earth?s surface. However, a significant number of factors-such as the high dimensions and size of the hyperspectral data, the lack of training samples, mixed pixels, light-scattering mechanisms in the acquisition process, and different atmospheric and geometric distortions-make such data inherently nonlinear and complex, which poses major challenges for existing methodologies to effectively process and analyze the data sets. Hence, rigorous and innovative methodologies are required for hyperspectral image (HSI) and signal processing and have become a center of attention for researchers worldwide.

536 citations


Cites background from "Hyperspectral Image Classification ..."

  • ..., Apache Spark, Caffe, Theano, Torch, and TensorFlow), which also find application in the hyperspectral analysis community [64], [65], [84], [337], [338]....

    [...]

References
More filters
Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: The authors randomly omits half of the feature detectors on each training case to prevent complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors.
Abstract: When a large feedforward neural network is trained on a small training set, it typically performs poorly on held-out test data. This "overfitting" is greatly reduced by randomly omitting half of the feature detectors on each training case. This prevents complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors. Instead, each neuron learns to detect a feature that is generally helpful for producing the correct answer given the combinatorially large variety of internal contexts in which it must operate. Random "dropout" gives big improvements on many benchmark tasks and sets new records for speech and object recognition.

6,899 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines by understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces and concludes that SVMs are a valid and effective alternative to conventional pattern recognition approaches.
Abstract: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs) First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces Then, we assess the effectiveness of SVMs with respect to conventional feature-reduction-based approaches and their performances in hypersubspaces of various dimensionalities To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (ie, radial basis function neural networks and the K-nearest neighbor classifier) Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data In particular, four different multiclass strategies are analyzed and compared: the one-against-all, the one-against-one, and two hierarchical tree-based strategies Different performance indicators have been used to support our experimental studies in a detailed and accurate way, ie, the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (feature-reduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data

3,607 citations


Additional excerpts

  • ...very few training samples [27]....

    [...]

Journal ArticleDOI
TL;DR: The concept of deep learning is introduced into hyperspectral data classification for the first time, and a new way of classifying with spatial-dominated information is proposed, which is a hybrid of principle component analysis (PCA), deep learning architecture, and logistic regression.
Abstract: Classification is one of the most popular topics in hyperspectral remote sensing. In the last two decades, a huge number of methods were proposed to deal with the hyperspectral data classification problem. However, most of them do not hierarchically extract deep features. In this paper, the concept of deep learning is introduced into hyperspectral data classification for the first time. First, we verify the eligibility of stacked autoencoders by following classical spectral information-based classification. Second, a new way of classifying with spatial-dominated information is proposed. We then propose a novel deep learning framework to merge the two features, from which we can get the highest classification accuracy. The framework is a hybrid of principle component analysis (PCA), deep learning architecture, and logistic regression. Specifically, as a deep learning architecture, stacked autoencoders are aimed to get useful high-level features. Experimental results with widely-used hyperspectral data indicate that classifiers built in this deep learning-based framework provide competitive performance. In addition, the proposed joint spectral-spatial deep neural network opens a new window for future research, showcasing the deep learning-based methods' huge potential for accurate hyperspectral data classification.

2,071 citations


"Hyperspectral Image Classification ..." refers methods in this paper

  • ...In [20], a deep learning architecture with multilayer stacked autoencoder was proposed to extract high-level features in an unsupervised manner using hyperspectral images....

    [...]