scispace - formally typeset
Search or ask a question
Journal ArticleDOI

iBLP: An XGBoost-Based Predictor for Identifying Bioluminescent Proteins.

TL;DR: Wang et al. as mentioned in this paper proposed a novel predicting framework for identifying bioluminescent proteins based on eXtreme gradient boosting algorithm (XGBoost) and using sequence-derived features.
Abstract: Bioluminescent proteins (BLPs) are a class of proteins that widely distributed in many living organisms with various mechanisms of light emission including bioluminescence and chemiluminescence from luminous organisms. Bioluminescence has been commonly used in various analytical research methods of cellular processes, such as gene expression analysis, drug discovery, cellular imaging, and toxicity determination. However, the identification of bioluminescent proteins is challenging as they share poor sequence similarities among them. In this paper, we briefly reviewed the development of the computational identification of BLPs and subsequently proposed a novel predicting framework for identifying BLPs based on eXtreme gradient boosting algorithm (XGBoost) and using sequence-derived features. To train the models, we collected BLP data from bacteria, eukaryote, and archaea. Then, for getting more effective prediction models, we examined the performances of different feature extraction methods and their combinations as well as classification algorithms. Finally, based on the optimal model, a novel predictor named iBLP was constructed to identify BLPs. The robustness of iBLP has been proved by experiments on training and independent datasets. Comparison with other published method further demonstrated that the proposed method is powerful and could provide good performance for BLP identification. The webserver and software package for BLP identification are freely available at http://lin-group.cn/server/iBLP.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The outcomes show that the DB-SVM method outperforms the iIM-CNN and csDMA in the prediction of DNA 6mA modification, which are the lastest research onDNA 6mA.
Abstract: DNA N6-methyladenine plays an important role in the restriction-modification system to isolate invasion from adventive DNA. The shortcomings of the high time-consumption and high costs of experimental methods have been exposed, and some computational methods have emerged. The support vector machine theory has received extensive attention in the bioinformatics field due to its solid theoretical foundation and many good characteristics. General machine learning methods include an important step of extracting features. The research has omitted this step and replaced with easy-to-obtain sequence distances matrix to obtain better results First sequence alignment technology was used to achieve the similarity matrix. Then a novel transformation turned the similarity matrix into a distance matrix. Next, the similarity-distance matrix is made positive semi-definite so that it can be used in the kernel matrix. Finally, the LIBSVM software was applied to solve the support vector machine. The five-fold cross-validation of this model on rice and mouse data has achieved excellent accuracy rates of 92.04% and 96.51%, respectively. This shows that the DB-SVM method has obvious advantages compared with traditional machine learning methods. Meanwhile this model achieved 0.943,0.982 and 0.818 accuracy,0.944, 0.982, and 0.838 Matthews correlation coefficient and 0.942, 0.982 and 0.840 F1 scores for the rice, M. musculus and cross-species genome datasets, respectively. These outcomes show that this model outperforms the iIM-CNN and csDMA in the prediction of DNA 6mA modification, which are the lastest research on DNA 6mA.

46 citations

Journal ArticleDOI
TL;DR: In this paper, a gradient boost decision tree (GBDT) classifier was trained on the optimal features to identify cyclins with an accuracy of 93.06% and AUC value of 0.971.
Abstract: Cyclin proteins are capable to regulate the cell cycle by forming a complex with cyclin-dependent kinases to activate cell cycle. Correct recognition of cyclin proteins could provide key clues for studying their functions. However, their sequences share low similarity, which results in poor prediction for sequence similarity-based methods. Thus, it is urgent to construct a machine learning model to identify cyclin proteins. This study aimed to develop a computational model to discriminate cyclin proteins from non-cyclin proteins. In our model, protein sequences were encoded by seven kinds of features that are amino acid composition, composition of k-spaced amino acid pairs, tri peptide composition, pseudo amino acid composition, geary correlation, normalized moreau-broto autocorrelation and composition/transition/distribution. Afterward, these features were optimized by using analysis of variance (ANOVA) and minimum redundancy maximum relevance (mRMR) with incremental feature selection (IFS) technique. A gradient boost decision tree (GBDT) classifier was trained on the optimal features. Five-fold cross-validated results showed that our model would identify cyclins with an accuracy of 93.06% and AUC value of 0.971, which are higher than the two recent studies on the same data.

31 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a novel framework based on deep learning that can aid radiologists in diagnosing COVID-19 cases from chest X-ray images, which reached 98.72% accuracy for two-class classification (COVID-17, No-findings) and 92% accuracy in multiclass classification.
Abstract: Background and Objective. The new coronavirus disease (known as COVID-19) was first identified in Wuhan and quickly spread worldwide, wreaking havoc on the economy and people's everyday lives. As the number of COVID-19 cases is rapidly increasing, a reliable detection technique is needed to identify affected individuals and care for them in the early stages of COVID-19 and reduce the virus's transmission. The most accessible method for COVID-19 identification is Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR); however, it is time-consuming and has false-negative results. These limitations encouraged us to propose a novel framework based on deep learning that can aid radiologists in diagnosing COVID-19 cases from chest X-ray images. Methods. In this paper, a pretrained network, DenseNet169, was employed to extract features from X-ray images. Features were chosen by a feature selection method, i.e., analysis of variance (ANOVA), to reduce computations and time complexity while overcoming the curse of dimensionality to improve accuracy. Finally, selected features were classified by the eXtreme Gradient Boosting (XGBoost). The ChestX-ray8 dataset was employed to train and evaluate the proposed method. Results and Conclusion. The proposed method reached 98.72% accuracy for two-class classification (COVID-19, No-findings) and 92% accuracy for multiclass classification (COVID-19, No-findings, and Pneumonia). The proposed method's precision, recall, and specificity rates on two-class classification were 99.21%, 93.33%, and 100%, respectively. Also, the proposed method achieved 94.07% precision, 88.46% recall, and 100% specificity for multiclass classification. The experimental results show that the proposed framework outperforms other methods and can be helpful for radiologists in the diagnosis of COVID-19 cases.

30 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper constructed a predictor called NmRF based on optimal mixed features and random forest classifier to identify 2'-O-methylation modification sites, which can identify modification sites of multiple species at the same time.
Abstract: 2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2'-hydroxyl group with a methyl group. The 2'-O-methylation modification site is detected in a variety of RNA types (miRNA, tRNA, mRNA, etc.), plays an important role in biological processes and is associated with different diseases. There are few functional mechanisms developed at present, and traditional high-throughput experiments are time-consuming and expensive to explore functional mechanisms. For a deeper understanding of relevant biological mechanisms, it is necessary to develop efficient and accurate recognition tools based on machine learning. Based on this, we constructed a predictor called NmRF based on optimal mixed features and random forest classifier to identify 2'-O-methylation modification sites. The predictor can identify modification sites of multiple species at the same time. To obtain a better prediction model, a two-step strategy is adopted; that is, the optimal hybrid feature set is obtained by combining the light gradient boosting algorithm and incremental feature selection strategy. In 10-fold cross-validation, the accuracies of Homo sapiens and Saccharomyces cerevisiae were 89.069 and 93.885%, and the AUC were 0.9498 and 0.9832, respectively. The rigorous 10-fold cross-validation and independent tests confirm that the proposed method is significantly better than existing tools. A user-friendly web server is accessible at http://lab.malab.cn/∼acy/NmRF.

28 citations

Journal ArticleDOI
TL;DR: In the anticipated model, two kinds of feature descriptors, namely, binary and k-mer composition were used to encode the DNA sequences of Geobacter pickeringii.
Abstract: 4mC is a type of DNA alteration that has the ability to synchronize multiple biological movements, for example, DNA replication, gene expressions, and transcriptional regulations. Accurate prediction of 4mC sites can provide exact information to their hereditary functions. The purpose of this study was to establish a robust deep learning model to recognize 4mC sites in Geobacter pickeringii. In the anticipated model, two kinds of feature descriptors, namely, binary and k-mer composition were used to encode the DNA sequences of Geobacter pickeringii. The obtained features from their fusion were optimized by using correlation and gradient-boosting decision tree (GBDT)-based algorithm with incremental feature selection (IFS) method. Then, these optimized features were inserted into 1D convolutional neural network (CNN) to classify 4mC sites from non-4mC sites in Geobacter pickeringii. The performance of the anticipated model on independent data exhibited an accuracy of 0.868, which was 4.2% higher than the existing model.

17 citations

References
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

14,872 citations

Journal ArticleDOI
TL;DR: Cd-hit-2d compares two protein datasets and reports similar matches between them; cd- Hit-est clusters a DNA/RNA sequence database and cd- hit-est-2D compares two nucleotide datasets.
Abstract: Motivation: In 2001 and 2002, we published two papers (Bioinformatics, 17, 282--283, Bioinformatics, 18, 77--82) describing an ultrafast protein sequence clustering program called cd-hit. This program can efficiently cluster a huge protein database with millions of sequences. However, the applications of the underlying algorithm are not limited to only protein sequences clustering, here we present several new programs using the same algorithm including cd-hit-2d, cd-hit-est and cd-hit-est-2d. Cd-hit-2d compares two protein datasets and reports similar matches between them; cd-hit-est clusters a DNA/RNA sequence database and cd-hit-est-2d compares two nucleotide datasets. All these programs can handle huge datasets with millions of sequences and can be hundreds of times faster than methods based on the popular sequence comparison and database search tools, such as BLAST. Availability: http://cd-hit.org Contact: [email protected]

8,306 citations

Journal ArticleDOI
Alex Bateman, Maria Jesus Martin, Claire O'Donovan, Michele Magrane, Rolf Apweiler, Emanuele Alpi, Ricardo Antunes, Joanna Arganiska, Benoit Bely, Mark Bingley, Carlos Bonilla, Ramona Britto, Borisas Bursteinas, Gayatri Chavali, Elena Cibrian-Uhalte, Alan Wilter Sousa da Silva, Maurizio De Giorgi, Tunca Doğan, Francesco Fazzini, Paul Gane, Leyla Jael Garcia Castro, Penelope Garmiri, Emma Hatton-Ellis, Reija Hieta, Rachael P. Huntley, Duncan Legge, W Liu, Jie Luo, Alistair MacDougall, Prudence Mutowo, Andrew Nightingale, Sandra Orchard, Klemens Pichler, Diego Poggioli, Sangya Pundir, Luis Pureza, Guoying Qi, Steven Rosanoff, Rabie Saidi, Tony Sawford, Aleksandra Shypitsyna, Edward Turner, Vladimir Volynkin, Tony Wardell, Xavier Watkins, Hermann Zellner, Andrew Peter Cowley, Luis Figueira, Weizhong Li, Hamish McWilliam, Rodrigo Lopez, Ioannis Xenarios, Lydie Bougueleret, Alan Bridge, Sylvain Poux, Nicole Redaschi, Lucila Aimo, Ghislaine Argoud-Puy, Andrea H. Auchincloss, Kristian B. Axelsen, Parit Bansal, Delphine Baratin, Marie Claude Blatter, Brigitte Boeckmann, Jerven Bolleman, Emmanuel Boutet, Lionel Breuza, Cristina Casal-Casas, Edouard de Castro, Elisabeth Coudert, Béatrice A. Cuche, M Doche, Dolnide Dornevil, Séverine Duvaud, Anne Estreicher, L Famiglietti, Marc Feuermann, Elisabeth Gasteiger, Sebastien Gehant, Vivienne Baillie Gerritsen, Arnaud Gos, Nadine Gruaz-Gumowski, Ursula Hinz, Chantal Hulo, Florence Jungo, Guillaume Keller, Vicente Lara, P Lemercier, Damien Lieberherr, Thierry Lombardot, Xavier D. Martin, Patrick Masson, Anne Morgat, Teresa Batista Neto, Nevila Nouspikel, Salvo Paesano, Ivo Pedruzzi, Sandrine Pilbout, Monica Pozzato, Manuela Pruess, Catherine Rivoire, Bernd Roechert, Michel Schneider, Christian J. A. Sigrist, K Sonesson, S Staehli, Andre Stutz, Shyamala Sundaram, Michael Tognolli, Laure Verbregue, Anne Lise Veuthey, Cathy H. Wu, Cecilia N. Arighi, Leslie Arminski, Chuming Chen, Yongxing Chen, John S. Garavelli, Hongzhan Huang, Kati Laiho, Peter B. McGarvey, Darren A. Natale, Baris E. Suzek, C. R. Vinayaka, Qinghua Wang, Yuqi Wang, Lai-Su L. Yeh, Meher Shruti Yerramalla, Jian Zhang 
TL;DR: An annotation score for all entries in UniProt is introduced to represent the relative amount of knowledge known about each protein to help identify which proteins are the best characterized and most informative for comparative analysis.
Abstract: UniProt is an important collection of protein sequences and their annotations, which has doubled in size to 80 million sequences during the past year. This growth in sequences has prompted an extension of UniProt accession number space from 6 to 10 characters. An increasing fraction of new sequences are identical to a sequence that already exists in the database with the majority of sequences coming from genome sequencing projects. We have created a new proteome identifier that uniquely identifies a particular assembly of a species and strain or subspecies to help users track the provenance of sequences. We present a new website that has been designed using a user-experience design process. We have introduced an annotation score for all entries in UniProt to represent the relative amount of knowledge known about each protein. These scores will be helpful in identifying which proteins are the best characterized and most informative for comparative analysis. All UniProt data is provided freely and is available on the web at http://www.uniprot.org/.

4,050 citations

Journal ArticleDOI
15 May 2001-Proteins
TL;DR: A remarkable improvement in prediction quality has been observed by using the pseudo‐amino acid composition and its mathematical framework and biochemical implication may also have a notable impact on improving the prediction quality of other protein features.
Abstract: The cellular attributes of a protein, such as which compartment of a cell it belongs to and how it is associated with the lipid bilayer of an organelle, are closely correlated with its biological functions. The success of human genome project and the rapid increase in the number of protein sequences entering into data bank have stimulated a challenging frontier: How to develop a fast and accurate method to predict the cellular attributes of a protein based on its amino acid sequence? The existing algorithms for predicting these attributes were all based on the amino acid composition in which no sequence order effect was taken into account. To improve the prediction quality, it is necessary to incorporate such an effect. However, the number of possible patterns for protein sequences is extremely large, which has posed a formidable difficulty for realizing this goal. To deal with such a difficulty, the pseudo-amino acid composition is introduced. It is a combination of a set of discrete sequence correlation factors and the 20 components of the conventional amino acid composition. A remarkable improvement in prediction quality has been observed by using the pseudo-amino acid composition. The success rates of prediction thus obtained are so far the highest for the same classification schemes and same data sets. It has not escaped from our notice that the concept of pseudo-amino acid composition as well as its mathematical framework and biochemical implication may also have a notable impact on improving the prediction quality of other protein features.

1,731 citations