scispace - formally typeset
Journal ArticleDOI

Ibuprofen-based advanced therapeutics: breaking the inflammatory link in cancer, neurodegeneration, and diseases.

Reads0
Chats0
TLDR
Ibuprofen is a classical nonsteroidal anti-inflammatory drug (NSAID) highly prescribed to reduce acute pain and inflammation under an array of conditions, including rheumatoid arthritis, osteoarthritis, dysmenorrhea, and gout.
Abstract
Ibuprofen is a classical nonsteroidal anti-inflammatory drug (NSAID) highly prescribed to reduce acute pain and inflammation under an array of conditions, including rheumatoid arthritis, osteoarthritis, dysmenorrhea, and gout. Ibuprofen acts as a potential inhibitor for cyclooxygenase enzymes (COX-1 and COX-2). In the past few decades, research on this small molecule has led to identifying other possible therapeutic benefits. Anti-tumorigenic and neuroprotective functions of Ibuprofen are majorly recognized in recent literature and need further consideration. Additionally, several other roles of this anti-inflammatory molecule have been discovered and subjected to experimental assessment in various diseases. However, the major challenge faced by Ibuprofen and other drugs of similar classes is their side effects, and tendency to cause gastrointestinal injury, generate cardiovascular risks, modulate hepatic and acute kidney diseases. Future research should also be conducted to deduce new methods and approaches of suppressing the unwanted toxic changes mediated by these drugs and develop new therapeutic avenues so that these small molecules continue to serve the purposes. This article primarily aims to develop a comprehensive and better understanding of Ibuprofen, its pharmacological features, therapeutic benefits, and possible but less understood medicinal properties apart from major challenges in its future application.KEY POINTSIbuprofen, an NSAID, is a classical anti-inflammatory therapeutic agent.Pro-apoptotic roles of NSAIDs have been explored in detail in the past, holding the key in anti-cancer therapies.Excessive and continuous use of NSAIDs may have several side effects and multiple organ damage.Hyperactivated Inflammation initiates multifold detrimental changes in multiple pathological conditions.Targeting inflammatory pathways hold the key to several therapeutic strategies against many diseases, including cancer, microbial infections, multiple sclerosis, and many other brain diseases.

read more

Citations
More filters
Journal ArticleDOI

Elucidating the Neuroprotective Role of PPARs in Parkinson's Disease: A Neoteric and Prospective Target.

TL;DR: In this article, a review of the emerging evidence enlightening the neuroprotective outcomes of PPAR agonists in in vivo and in vitro models experiencing Parkinson's disease is presented.
Journal ArticleDOI

Novel 1,3-diaryl pyrazole derivatives bearing methylsulfonyl moiety: Design, synthesis, molecular docking and dynamics, with dual activities as anti-inflammatory and anticancer agents through selectively targeting COX-2.

TL;DR: In this article , a series of novel 1-aryl-3-(4-methylsulfonylphenyl) pyrazole derivatives were synthesized, characterized by several spectroscopic techniques, and investigated as potential anti-inflammatory and anticancer agents.
Journal ArticleDOI

Synthesis of Ibuprofen Monoglyceride Using Novozym®435: Biocatalyst Activation and Stabilization in Multiphasic Systems

TL;DR: In this paper , the authors focused on the enzymatic esterification of glycerol and ibuprofen at high concentrations in two triphasic systems composed of toluene+ibuprofene (apolar) liquid phases, and a solid phase with the industrial immobilized lipase B from Candida antarctica named Novozym®435 (N435) acting as the biocatalyst.
Journal ArticleDOI

The Effects of 2′-Hydroxy-3,6′-Dimethoxychalcone on Melanogenesis and Inflammation

TL;DR: In this article , the effect of 3,6′-dimethoxychalcone on melanogenesis and lipopolysaccharides (LPS)-induced inflammation in mouse B16F10 and RAW 264.7 cells was investigated.
References
More filters
Journal ArticleDOI

Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention

TL;DR: Nonsteroidal anti-inflammatory drugs (NSAIDs) can inhibit colorectal tumorigenesis and are among the few agents known to be chemopreventive, but the mechanism of these effects remains unclear.
Journal ArticleDOI

Endothelium-derived relaxing factor (nitric oxide) has protective actions in the stomach

TL;DR: Results indicate that ethanol-induced gastric damage can be significantly reduced by nitric oxide, and may be related to its vasodilator or anti-aggregatory properties.
Journal ArticleDOI

Non-steroidal anti-inflammatory drugs: What is the actual risk of liver damage?

TL;DR: A critical analysis of the dissimilar results currently available in the literature concerning the epidemiology of NSAIDS hepatotoxicity is provided to review the risk of hepatot toxicity for each one of the most commonly employed compounds of the NSAIDs family, based on past and recently published data.
Journal ArticleDOI

Pentoxifylline prevents indomethacin induced acute gastric mucosal damage in rats: role of tumour necrosis factor alpha.

TL;DR: Pentoxifylline prevents the acute gastric mucosal damage and neutrophil margination induced by indomethacin and reduces indometHacin induced release of TNF alpha.
Related Papers (5)