scispace - formally typeset
Journal ArticleDOI

Ibuprofen-based advanced therapeutics: breaking the inflammatory link in cancer, neurodegeneration, and diseases.

Reads0
Chats0
TLDR
Ibuprofen is a classical nonsteroidal anti-inflammatory drug (NSAID) highly prescribed to reduce acute pain and inflammation under an array of conditions, including rheumatoid arthritis, osteoarthritis, dysmenorrhea, and gout.
Abstract
Ibuprofen is a classical nonsteroidal anti-inflammatory drug (NSAID) highly prescribed to reduce acute pain and inflammation under an array of conditions, including rheumatoid arthritis, osteoarthritis, dysmenorrhea, and gout. Ibuprofen acts as a potential inhibitor for cyclooxygenase enzymes (COX-1 and COX-2). In the past few decades, research on this small molecule has led to identifying other possible therapeutic benefits. Anti-tumorigenic and neuroprotective functions of Ibuprofen are majorly recognized in recent literature and need further consideration. Additionally, several other roles of this anti-inflammatory molecule have been discovered and subjected to experimental assessment in various diseases. However, the major challenge faced by Ibuprofen and other drugs of similar classes is their side effects, and tendency to cause gastrointestinal injury, generate cardiovascular risks, modulate hepatic and acute kidney diseases. Future research should also be conducted to deduce new methods and approaches of suppressing the unwanted toxic changes mediated by these drugs and develop new therapeutic avenues so that these small molecules continue to serve the purposes. This article primarily aims to develop a comprehensive and better understanding of Ibuprofen, its pharmacological features, therapeutic benefits, and possible but less understood medicinal properties apart from major challenges in its future application.KEY POINTSIbuprofen, an NSAID, is a classical anti-inflammatory therapeutic agent.Pro-apoptotic roles of NSAIDs have been explored in detail in the past, holding the key in anti-cancer therapies.Excessive and continuous use of NSAIDs may have several side effects and multiple organ damage.Hyperactivated Inflammation initiates multifold detrimental changes in multiple pathological conditions.Targeting inflammatory pathways hold the key to several therapeutic strategies against many diseases, including cancer, microbial infections, multiple sclerosis, and many other brain diseases.

read more

Citations
More filters
Journal ArticleDOI

Elucidating the Neuroprotective Role of PPARs in Parkinson's Disease: A Neoteric and Prospective Target.

TL;DR: In this article, a review of the emerging evidence enlightening the neuroprotective outcomes of PPAR agonists in in vivo and in vitro models experiencing Parkinson's disease is presented.
Journal ArticleDOI

Novel 1,3-diaryl pyrazole derivatives bearing methylsulfonyl moiety: Design, synthesis, molecular docking and dynamics, with dual activities as anti-inflammatory and anticancer agents through selectively targeting COX-2.

TL;DR: In this article , a series of novel 1-aryl-3-(4-methylsulfonylphenyl) pyrazole derivatives were synthesized, characterized by several spectroscopic techniques, and investigated as potential anti-inflammatory and anticancer agents.
Journal ArticleDOI

Synthesis of Ibuprofen Monoglyceride Using Novozym®435: Biocatalyst Activation and Stabilization in Multiphasic Systems

TL;DR: In this paper , the authors focused on the enzymatic esterification of glycerol and ibuprofen at high concentrations in two triphasic systems composed of toluene+ibuprofene (apolar) liquid phases, and a solid phase with the industrial immobilized lipase B from Candida antarctica named Novozym®435 (N435) acting as the biocatalyst.
Journal ArticleDOI

The Effects of 2′-Hydroxy-3,6′-Dimethoxychalcone on Melanogenesis and Inflammation

TL;DR: In this article , the effect of 3,6′-dimethoxychalcone on melanogenesis and lipopolysaccharides (LPS)-induced inflammation in mouse B16F10 and RAW 264.7 cells was investigated.
References
More filters
Journal ArticleDOI

Risk of Alzheimer's disease and duration of NSAID use

TL;DR: Findings from a longitudinal study of 1,686 participants in the Baltimore Longitudinal Study of Aging are consistent with evidence from cross-sectional studies indicating protection against AD risk among NSAID users and with evidence suggesting that one stage of the pathophysiology leading to AD is characterized by an inflammatory process.
Journal ArticleDOI

Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation

TL;DR: The rise in COX and NOS activities in the skin during the acute phase reinforces the proinflammatory role for prostanoids and suggests one also for nitric oxide and there may be differential regulation of these enzymes, perhaps due to the changing pattern of cytokines during the inflammatory response.
Journal ArticleDOI

Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target

TL;DR: The enzyme activity is glutathione-dependent, and the protein expression is induced by the proinflammatory cytokine IL-1beta, which makes PGE synthase a potential novel target for drug development.
Journal ArticleDOI

Gastrointestinal Damage Associated with the Use of Nonsteroidal Antiinflammatory Drugs

TL;DR: Patients who take NSAIDs have an increased risk of nonspecific ulceration of the small-intestinal mucosa, which is less common than ulcers of the stomach or duodenum, but can lead to life-threatening complications.
Journal ArticleDOI

Ibuprofen Suppresses Plaque Pathology and Inflammation in a Mouse Model for Alzheimer's Disease

TL;DR: The anti-inflammatory drug ibuprofen, which has been associated with reduced AD risk in human epidemiological studies, can significantly delay some forms of AD pathology, including amyloid deposition, when administered early in the disease course of a transgenic mouse model of AD.
Related Papers (5)