scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ideal hydrogen termination of the Si (111) surface

12 Feb 1990-Applied Physics Letters (American Institute of Physics)-Vol. 56, Iss: 7, pp 656-658
TL;DR: In this article, the effect of varying the solution pH on the surface structure was studied by measuring the SiH stretch vibrations with infrared absorption spectroscopy, and the surface was found to be very homogeneous with low defect density (<0.5%) and narrow vibrational linewidth.
Abstract: Aqueous HF etching of silicon surfaces results in the removal of the surface oxide and leaves behind silicon surfaces terminated by atomic hydrogen. The effect of varying the solution pH on the surface structure is studied by measuring the SiH stretch vibrations with infrared absorption spectroscopy. Basic solutions ( pH=9–10) produce ideally terminated Si(111) surfaces with silicon monohydride ( 3/4 SiH) oriented normal to the surface. The surface is found to be very homogeneous with low defect density (<0.5%) and narrow vibrational linewidth (0.95 cm−1 ).
Citations
More filters
Journal ArticleDOI
21 Mar 2003-Science
TL;DR: These hydrogen-terminated SiNW surfaces seem to be more oxidation-resistant than regular silicon wafer surfaces, because atomically resolved STM images of SiNWs were obtained in air after several days' exposure to the ambient environment.
Abstract: Small-diameter (1 to 7 nanometers) silicon nanowires (SiNWs) were prepared, and their surfaces were removed of oxide and terminated with hydrogen by a hydrofluoric acid dip. Scanning tunneling microscopy (STM) of these SiNWs, performed both in air and in ultrahigh vacuum, revealed atomically resolved images that can be interpreted as hydrogen-terminated Si (111)-(1 × 1) and Si (001)-(1 × 1) surfaces corresponding to SiH 3 on Si (111) and SiH 2 on Si (001), respectively. These hydrogen-terminated SiNW surfaces seem to be more oxidation-resistant than regular silicon wafer surfaces, because atomically resolved STM images of SiNWs were obtained in air after several days9 exposure to the ambient environment. Scanning tunneling spectroscopy measurements were performed on the oxide-removed SiNWs and were used to evaluate the electronic energy gaps. The energy gaps were found to increase with decreasing SiNW diameter from 1.1 electron volts for 7 nanometers to 3.5 electron volts for 1.3 nanometers, in agreement with previous theoretical predictions.

1,095 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the dynamic field of crystalline silicon photovoltaics from a device-engineering perspective and give an up-to-date summary of promising recent pathways for further efficiency improvements and cost reduction employing novel carrierselective passivating contact schemes, as well as tandem multi-junction architectures, in particular those that combine silicon absorbers with organic-inorganic perovskite materials.
Abstract: With a global market share of about 90%, crystalline silicon is by far the most important photovoltaic technology today. This article reviews the dynamic field of crystalline silicon photovoltaics from a device-engineering perspective. First, it discusses key factors responsible for the success of the classic dopant-diffused silicon homojunction solar cell. Next it analyzes two archetypal high-efficiency device architectures – the interdigitated back-contact silicon cell and the silicon heterojunction cell – both of which have demonstrated power conversion efficiencies greater than 25%. Last, it gives an up-to-date summary of promising recent pathways for further efficiency improvements and cost reduction employing novel carrier-selective passivating contact schemes, as well as tandem multi-junction architectures, in particular those that combine silicon absorbers with organic–inorganic perovskite materials.

751 citations

Journal ArticleDOI
TL;DR: This review is about understanding and controlling organic molecular adsorption on silicon and a discussion of recent studies of adsorbate structure is presented to provide a microscopic picture of structure and bonding in covalently attached molecule-silicon surface systems.
Abstract: This review is about understanding and controlling organic molecular adsorption on silicon. The goal is to provide a microscopic picture of structure and bonding in covalently attached molecule-silicon surface systems. The bias here is that an unprecedented, detailed understanding of adsorbate-surface structures is required in order to gain the control necessary to incorporate organic function into existing technologies or, eventually, to make new molecule-scale devices. A discussion of recent studies of adsorbate structure is presented. This includes simple alkenes, polyenes, benzene, and carene adsorbed on Si(100). Also included is a discussion of wet chemical procedures for forming alkyl and alkoxy covalently functionalized silicon. These discussions are presented together with comments on the related issues of adsorption dynamics and nano-scale manipulation in an effort to point the way toward principles and procedures that will allow the hybrid properties of organic molecules and surfaces to be harnessed.

573 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that if the surface is flat and smooth, the nature of the reflection is called specular, i.e., mirror-like, and obeys the simple law that the angle of incidence equals the angles of reflection.
Abstract: Reflection of light is a surface phenomenon—it is strongly dependent on the nature of the surface and can therefore be used to study surfaces. If the surface is flat and smooth, the nature of the reflection is called specular, i.e., mirrorlike, and obeys the simple law that the angle of incidence equals the angle of reflection.

1,809 citations

Journal ArticleDOI
TL;DR: It is found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive, which has implications for the ultimate efficiency of silicon solar cells.
Abstract: We have found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive. With preparation in this manner, the surface-recombination velocity on Si111g is only 0.25 cm/sec, which is the lowest value ever reported for any semiconductor. Multiple-internal-reflection infrared spectroscopy shows that the surface appears to be covered by covalent Si-H bonds, leaving virtually no surface dangling bonds to act as recombinatiuon centers. These results have implications for the ultimate efficiency of silicon solar cells.

910 citations

Journal ArticleDOI
Yves J. Chabal1
TL;DR: The theoretical and experimental foundation of surface IR spectroscopy is described and selected examples are presented to illustrate the kind of information derived in several important areas of surface science such as chemistry, structure, dynamics and kinetics at surfaces as discussed by the authors.

760 citations

Journal ArticleDOI
TL;DR: In this paper, multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces, and these very inert surfaces are found to be almost completely covered by atomic hydrogen.
Abstract: Multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces. These very inert surfaces are found to be almost completely covered by atomic hydrogen. Results using polarized radiation on both flat and stepped Si(111) and Si(100) surfaces reveal the presence of many chemisorption sites (hydrides) that indicate that the surfaces are microscopically rough, although locally ordered. In particular, the HF‐prepared Si(100) surface appears to have little in common with the smooth H‐saturated Si(100) surface prepared in ultrahigh vacuum.

588 citations

Journal ArticleDOI
TL;DR: Polarized internal reflection spectroscopy has been used to characterize HF-treated Si(111) surfaces as mentioned in this paper, and the silicon-hydrogen stretching vibrations indicate that the surface is well ordered, but is microscopically rough, with coupled monohydride, dihydride and trihydride termination.
Abstract: Polarized internal reflection spectroscopy has been used to characterize HF‐treated Si(111) surfaces. The silicon‐hydrogen stretching vibrations indicate that the surface is well ordered, but is microscopically rough, with coupled monohydride, dihydride, and trihydride termination.

410 citations