scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Identification of 42 Genes Linked to Stage II Colorectal Cancer Metastatic Relapse

28 Apr 2016-International Journal of Molecular Sciences (Multidisciplinary Digital Publishing Institute)-Vol. 17, Iss: 5, pp 598
TL;DR: 42 altered transcripts associated with metastatic relapse, short disease-free or overall survival, and/or epithelial to mesenchymal transition (EMT) are identified and may be useful for predicting metastasis relapse in stage II CRC.
Abstract: Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Metastasis remains the primary cause of CRC death. Predicting the possibility of metastatic relapse in early-stage CRC is of paramount importance to target therapy for patients who really need it and spare those with low-potential of metastasis. Ninety-six stage II CRC cases were stratified using high-resolution array comparative genomic hybridization (aCGH) data based on a predictive survival algorithm and supervised clustering. All genes included within the resultant copy number aberrations were each interrogated independently at mRNA level using CRC expression datasets available from public repositories, which included 1820 colon cancers, and 167 normal colon tissues. Reduced mRNA expression driven by copy number losses and increased expression driven by copy number gains revealed 42 altered transcripts (29 reduced and 13 increased transcripts) associated with metastatic relapse, short disease-free or overall survival, and/or epithelial to mesenchymal transition (EMT). Resultant genes were classified based on gene ontology (GO), which identified four functional enrichment groups involved in growth regulation, genomic integrity, metabolism, and signal transduction pathways. The identified 42 genes may be useful for predicting metastatic relapse in stage II CRC. Further studies are necessary to validate these findings.
Citations
More filters
Journal ArticleDOI
TL;DR: A robust prognostic prediction model was constructed for KIRC patients, and the findings revealed that the AS events could act as potential prognostic biomarkers forKIRC.
Abstract: There is growing evidence that alternative splicing (AS) plays an important role in cancer development. However, a comprehensive analysis of AS signatures in kidney renal clear cell carcinoma (KIRC) is lacking and urgently needed. It remains unclear whether AS acts as diagnostic biomarkers in predicting the prognosis of KIRC patients. In the work, gene expression and clinical data of KIRC were obtained from The Cancer Genome Atlas (TCGA), and profiles of AS events were downloaded from the SpliceSeq database. The RNA sequence/AS data and clinical information were integrated, and we conducted the Cox regression analysis to screen survival-related AS events and messenger RNAs (mRNAs). Correlation between prognostic AS events and gene expression were analyzed using the Pearson correlation coefficient. Protein-protein interaction analysis was conducted for the prognostic AS-related genes, and a potential regulatory network was built using Cytoscape (version 3.6.1). Meanwhile, functional enrichment analysis was conducted. A prognostic risk score model is then established based on seven hub genes (KRT222, LENG8, APOB, SLC3A1, SCD5, AQP1, and ADRA1A) that have high performance in the risk classification of KIRC patients. A total 46,415 AS events including 10,601 genes in 537 patients with KIRC were identified. In univariate Cox regression analysis, 13,362 survival associated AS events and 8,694 survival-specific mRNAs were detected. Common 3,105 genes were screen by overlapping 13,362 survival associated AS events and 8,694 survival-specific mRNAs. The Pearson correlation analysis suggested that 13 genes were significantly correlated with AS events (Pearson correlation coefficient >0.8 or <-0.8). Then, We conducted multivariate Cox regression analyses to select the potential prognostic AS genes. Seven genes were identified to be significantly related to OS. A prognostic model based on seven genes was constructed. The area under the ROC curve was 0.767. In the current study, a robust prognostic prediction model was constructed for KIRC patients, and the findings revealed that the AS events could act as potential prognostic biomarkers for KIRC.

44 citations


Cites background from "Identification of 42 Genes Linked t..."

  • ...It has been reported that ADRA1A is highly expressed in peripheral blood vessels of patients with uterine cancer, and ADRA1A regulates proliferation, inhibits tumor formation/metastasis (Al‐Temaimi et al., 2016)....

    [...]

Journal ArticleDOI
TL;DR: An evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis and the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers are discussed.

41 citations

Journal ArticleDOI
TL;DR: Hypoxic gene signature is a satisfactory prognostic model for early stage CRC patients, and the exact biological mechanism needs to be validated further.
Abstract: The hypoxic tumor microenvironment accelerates the invasion and migration of colorectal cancer (CRC) cells. The aim of this study was to develop and validate a hypoxia gene signature for predicting the outcome in stage I/II CRC patients that have limited therapeutic options. The hypoxic gene signature (HGS) was constructed using transcriptomic data of 309 CRC patients with complete clinical information from the CIT microarray dataset. A total of 1877 CRC patients with complete prognostic information in six independent datasets were divided into a training cohort and two validation cohorts. Univariate and multivariate analyses were conducted to evaluate the prognostic value of HGS. The HGS consisted of 14 genes, and demarcated the CRC patients into the high- and low-risk groups. In all three cohorts, patients in the high-risk group had significantly worse disease free survival (DFS) compared with those in the low risk group (training cohort—HR = 4.35, 95% CI 2.30–8.23, P < 0.001; TCGA cohort—HR = 2.14, 95% CI 1.09–4.21, P = 0.024; meta-validation cohort—HR = 1.91, 95% CI 1.08–3.39, P = 0.024). Compared to Oncotype DX, HGS showed superior predictive outcome in the training cohort (C-index, 0.80 vs 0.65) and the validation cohort (C-index, 0.70 vs 0.61). Pathway analysis of the high- and low-HGS groups showed significant differences in the expression of genes involved in mTROC1, G2-M, mitosis, oxidative phosphorylation, MYC and PI3K–AKT–mTOR pathways (P < 0.005). Hypoxic gene signature is a satisfactory prognostic model for early stage CRC patients, and the exact biological mechanism needs to be validated further.

18 citations


Cites background from "Identification of 42 Genes Linked t..."

  • ...Despite identifying numerous genes that affect the recurrence and metastasis of CRC [18, 19], no prognostic gene signature has been validated so far....

    [...]

Journal ArticleDOI
TL;DR: An overview of the critical roles genetic changes in GLIS1-3 play in the development of several malignancies is provided and Targeting upstream signaling pathways that regulate GLIS signaling may offer new therapeutic strategies in the management of cancer.
Abstract: GLI-similar 1-3 (GLIS1-3), a subfamily of Kruppel-like zinc finger transcription factors, function as key regulators of several biological processes important to oncogenesis, including control of cell proliferation, differentiation, self-renewal, and epithelial-mesenchymal transition. This review provides a short overview of the critical roles genetic changes in GLIS1-3 play in the development of several malignancies. This includes intrachromosomal translocations involving GLIS2 and ETO2/CBFA2T3 in the development of pediatric non-Down's syndrome (DS), acute megakaryoblastic leukemia (AMKL), a malignancy with poor prognosis, and an association of interchromosomal translocations between GLIS3, GLIS1, and PAX8, and between GLIS3 and CLPTM1L with hyalinizing trabecular tumors (HTTs) and fibrolamellar hepatocellular carcinoma (FHCC), respectively. Targeting upstream signaling pathways that regulate GLIS signaling may offer new therapeutic strategies in the management of cancer.

13 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper proposed parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples.
Abstract: SUMMARY Non-biological experimental variation or “batch effects” are commonly observed across multiple batches of microarray experiments, often rendering the task of combining data from these batches difficult. The ability to combine microarray data sets is advantageous to researchers to increase statistical power to detect biological phenomena from studies where logistical considerations restrict sample size or in studies that require the sequential hybridization of arrays. In general, it is inappropriate to combine data sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but these are often complicated and require large batch sizes (>25) to implement. Because the majority of microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. We propose parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. We illustrate our methods using two example data sets and show that our methods are justifiable, easy to apply, and useful in practice. Software for our method is freely available at: http://biosun1.harvard.edu/complab/batch/.

6,319 citations


"Identification of 42 Genes Linked t..." refers methods in this paper

  • ...The normalized data was compiled and subsequently standardized using ComBat to remove batch effects [40]....

    [...]

Journal ArticleDOI
TL;DR: Tarin et al. as discussed by the authors described the process of epithelial-mesenchymal transition (EMT) as a defining structural feature of organ development and discussed its role in cancer and fibrosis, as well as identifying new markers to facilitate the observation of EMT in vivo.
Abstract: The conversion of an epithelial cell to a mesenchymal cell is critical to metazoan embryogenesis and a defining structural feature of organ development. Current interest in this process, which is described as an epithelial-mesenchymal transition (EMT), stems from its developmental importance and its involvement in several adult pathologies. Interest and research in EMT are currently at a high level, as seen by the attendance at the recent EMT meeting in Vancouver, Canada (October 1-3, 2005). The meeting, which was hosted by The EMT International Association, was the second international EMT meeting, the first being held in Port Douglas, Queensland, Australia in October 2003. The EMT International Association was formed in 2002 to provide an international body for those interested in EMT and the reverse process, mesenchymal-epithelial transition, and, most importantly, to bring together those working on EMT in development, cancer, fibrosis, and pathology. These themes continued during the recent meeting in Vancouver. Discussion at the Vancouver meeting spanned several areas of research, including signaling pathway activation of EMT and the transcription factors and gene targets involved. Also covered in detail was the basic cell biology of EMT and its role in cancer and fibrosis, as well as the identification of new markers to facilitate the observation of EMT in vivo. This is particularly important because the potential contribution of EMT during neoplasia is the subject of vigorous scientific debate (Tarin, D., E.W. Thompson, and D.F. Newgreen. 2005. Cancer Res. 65:5996-6000; Thompson, E.W., D.F. Newgreen, and D. Tarin. 2005. Cancer Res. 65:5991-5995).

1,912 citations

Journal ArticleDOI
TL;DR: Since keratins also exhibit characteristic expression patterns in human tumors, several of them have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping.
Abstract: The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family.

1,186 citations


"Identification of 42 Genes Linked t..." refers methods in this paper

  • ...Briefly, a curated EMT gene set [42], after removing basal keratins genes [43,44], was used as an initial selection of epithelial and mesenchymal cell lines....

    [...]

Journal ArticleDOI
TL;DR: The functional requirement of EMT and/or MET during the individual steps of tumor metastasis is reviewed and the potential of targeting this program when treating metastatic diseases is discussed.
Abstract: Tumor metastasis is a multistep process by which tumor cells disseminate from their primary site and form secondary tumors at a distant site. Metastasis occurs through a series of steps: local invasion, intravasation, transport, extravasation, and colonization. A developmental program termed epithelial-mesenchymal transition (EMT) has been shown to play a critical role in promoting metastasis in epithelium-derived carcinoma. Recent experimental and clinical studies have improved our knowledge of this dynamic program and implicated EMT and its reverse program, mesenchymal-epithelial transition (MET), in the metastatic process. Here, we review the functional requirement of EMT and/or MET during the individual steps of tumor metastasis and discuss the potential of targeting this program when treating metastatic diseases.

1,008 citations


"Identification of 42 Genes Linked t..." refers background in this paper

  • ...EMT fundamentally involves genomic and phenotypic changes of epithelial cells into mesenchymal cells, loss of epithelial cell-cell contact, loss of cell polarity, and acquisition of migratory characteristics facilitating metastasis [17]....

    [...]

Journal ArticleDOI
TL;DR: In vivo, the requirement of "reversible EMT" in tumor metastasis is demonstrated and may resolve the controversy on the importance of EMT in carcinoma metastasis.

960 citations


"Identification of 42 Genes Linked t..." refers background in this paper

  • ...Activation of EMT was shown to reduce cell proliferation by targeting specific pro-proliferation genes [28,29]....

    [...]

Related Papers (5)