scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Identification of a specific inhibitor of the Dishevelled PDZ domain

05 Nov 2005-Biochemistry (American Chemical Society)-Vol. 44, Iss: 47, pp 15495-15503
TL;DR: This compound provides a basis for rational design of high-affinity inhibitors of the PDZ domain, which can block Wnt signaling by interrupting the Fz-Dvl interaction.
Abstract: The Wnt signaling pathways are involved in embryo development as well as in tumorigenesis. Dishevelled (Dvl) transduces Wnt signals from the receptor Frizzled (Fz) to downstream components in canonical and noncanonical Wnt signaling pathways. The Dvl PDZ domain is thought to play an essential role in both pathways, and we recently demonstrated that the Dvl PDZ domain binds directly to Fz receptors. In this study, using structure-based virtual ligand screening, we identified an organic molecule (NSC668036) from the National Cancer Institute small-molecule library that can bind to the Dvl PDZ domain. We then used molecular dynamics simulation to analyze the binding between the PDZ domain and NSC668036 in detail. In addition, we showed that, in Xenopus, as expected, NSC668036 inhibited the signaling induced by Wnt3A. This compound provides a basis for rational design of high-affinity inhibitors of the PDZ domain, which can block Wnt signaling by interrupting the Fz-Dvl interaction.
Citations
More filters
Journal ArticleDOI
TL;DR: Some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis are highlighted, and potential therapeutic implications are discussed.

4,926 citations

Journal ArticleDOI
TL;DR: This work has shown that WNTs and their downstream effectors regulate various processes that are important for cancer progression, including tumour initiation, tumour growth, cell senescence, cell death, differentiation and metastasis, and improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can alter WNT signalling in preclinical models.
Abstract: Since the initial discovery of the oncogenic activity of WNT1 in mouse mammary glands, our appreciation for the complex roles for WNT signalling pathways in cancer has increased dramatically. WNTs and their downstream effectors regulate various processes that are important for cancer progression, including tumour initiation, tumour growth, cell senescence, cell death, differentiation and metastasis. Although WNT signalling pathways have been difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can alter WNT signalling in preclinical models, thus setting the stage for clinical trials in humans.

1,743 citations

Journal ArticleDOI
TL;DR: A Timeline of crucial discoveries about the components and functions of this essential pathway is presented.
Abstract: The Wnt signalling pathway is an ancient system that has been highly conserved during evolution. It has a crucial role in the embryonic development of all animal species, in the regeneration of tissues in adult organisms and in many other processes. Mutations or deregulated expression of components of the Wnt pathway can induce disease, most importantly cancer. The first gene to be identified that encodes a Wnt signalling component, Int1 (integration 1), was molecularly characterized from mouse tumour cells 25 years ago. In parallel, the homologous gene Wingless in Drosophila melanogaster, which produces developmental defects in embryos, was characterized. Since then, further components of the Wnt pathway have been identified and their epistatic relationships have been defined. This article is a Timeline of crucial discoveries about the components and functions of this essential pathway.

1,498 citations

Journal ArticleDOI
TL;DR: The role that embryonic signaling pathways play in the function of CSCs, the development of new anti-CSC therapeutic agents, and the complexity of potential CSC signaling cross-talk are described in this Review.
Abstract: Tumor relapse and metastasis remain major obstacles for improving overall cancer survival, which may be due at least in part to the existence of cancer stem cells (CSCs). CSCs are characterized by tumorigenic properties and the ability to self-renew, form differentiated progeny, and develop resistance to therapy. CSCs use many of the same signaling pathways that are found in normal stem cells, such as Wnt, Notch, and Hedgehog (Hh). The origin of CSCs is not fully understood, but data suggest that they originate from normal stem or progenitor cells, or possibly other cancer cells. Therapeutic targeting of both CSCs and bulk tumor populations may provide a strategy to suppress tumor regrowth. Development of agents that target critical steps in the Wnt, Notch, and Hh pathways will be complicated by signaling cross-talk. The role that embryonic signaling pathways play in the function of CSCs, the development of new anti-CSC therapeutic agents, and the complexity of potential CSC signaling cross-talk are described in this Review.

893 citations

Journal ArticleDOI
TL;DR: The problems and potential solutions to the vexing situation of aberrant regulation of the WNT pathway are examined and a attempt is made to bring them into perspective.
Abstract: WNT–β-catenin signalling is involved in a multitude of developmental processes and the maintenance of adult tissue homeostasis by regulating cell proliferation, differentiation, migration, genetic stability and apoptosis, as well as by maintaining adult stem cells in a pluripotent state. Not surprisingly, aberrant regulation of this pathway is therefore associated with a variety of diseases, including cancer, fibrosis and neurodegeneration. Despite this knowledge, therapeutic agents specifically targeting the WNT pathway have only recently entered clinical trials and none has yet been approved. This Review examines the problems and potential solutions to this vexing situation and attempts to bring them into perspective.

823 citations

References
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N), which is comparable to that of a simple truncation method of 10 A or less.
Abstract: The previously developed particle mesh Ewald method is reformulated in terms of efficient B‐spline interpolation of the structure factors This reformulation allows a natural extension of the method to potentials of the form 1/rp with p≥1 Furthermore, efficient calculation of the virial tensor follows Use of B‐splines in place of Lagrange interpolation leads to analytic gradients as well as a significant improvement in the accuracy We demonstrate that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N) For biomolecular systems with many thousands of atoms this method permits the use of Ewald summation at a computational cost comparable to that of a simple truncation method of 10 A or less

17,897 citations

Journal ArticleDOI
TL;DR: The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.
Abstract: The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.

13,804 citations

Journal ArticleDOI
TL;DR: A general Amber force field for organic molecules is described, designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens.
Abstract: We describe here a general Amber force field (GAFF) for organic molecules. GAFF is designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens. It uses a simple functional form and a limited number of atom types, but incorporates both empirical and heuristic models to estimate force constants and partial atomic charges. The performance of GAFF in test cases is encouraging. In test I, 74 crystallographic structures were compared to GAFF minimized structures, with a root-mean-square displacement of 0.26 A, which is comparable to that of the Tripos 5.2 force field (0.25 A) and better than those of MMFF 94 and CHARMm (0.47 and 0.44 A, respectively). In test II, gas phase minimizations were performed on 22 nucleic acid base pairs, and the minimized structures and intermolecular energies were compared to MP2/6-31G* results. The RMS of displacements and relative energies were 0.25 A and 1.2 kcal/mol, respectively. These data are comparable to results from Parm99/RESP (0.16 A and 1.18 kcal/mol, respectively), which were parameterized to these base pairs. Test III looked at the relative energies of 71 conformational pairs that were used in development of the Parm99 force field. The RMS error in relative energies (compared to experiment) is about 0.5 kcal/mol. GAFF can be applied to wide range of molecules in an automatic fashion, making it suitable for rational drug design and database searching.

13,615 citations

Journal ArticleDOI
TL;DR: Weiner et al. as mentioned in this paper derived a new molecular mechanical force field for simulating the structures, conformational energies, and interaction energies of proteins, nucleic acids, and many related organic molecules in condensed phases.
Abstract: We present the derivation of a new molecular mechanical force field for simulating the structures, conformational energies, and interaction energies of proteins, nucleic acids, and many related organic molecules in condensed phases. This effective two-body force field is the successor to the Weiner et al. force field and was developed with some of the same philosophies, such as the use of a simple diagonal potential function and electrostatic potential fit atom centered charges. The need for a 10-12 function for representing hydrogen bonds is no longer necessary due to the improved performance of the new charge model and new van der Waals parameters. These new charges are determined using a 6-31G* basis set and restrained electrostatic potential (RESP) fitting and have been shown to reproduce interaction energies, free energies of solvation, and conformational energies of simple small molecules to a good degree of accuracy. Furthermore, the new RESP charges exhibit less variability as a function of the molecular conformation used in the charge determination. The new van der Waals parameters have been derived from liquid simulations and include hydrogen parameters which take into account the effects of any geminal electronegative atoms. The bonded parameters developed by Weiner et al. were modified as necessary to reproduce experimental vibrational frequencies and structures. Most of the simple dihedral parameters have been retained from Weiner et al., but a complex set of 4 and yj parameters which do a good job of reproducing the energies of the low-energy conformations of glycyl and alanyl dipeptides has been developed for the peptide backbone.

12,660 citations

Journal ArticleDOI
TL;DR: A historical perspective on the application of molecular dynamics to biological macromolecules is presented and recent developments combining state-of-the-art force fields with continuum solvation calculations have allowed for the fourth era of MD applications in which one can often derive both accurate structure and accurate relative free energies from molecular dynamics trajectories.
Abstract: A historical perspective on the application of molecular dynamics (MD) to biological macromolecules is presented. Recent developments combining state-of-the-art force fields with continuum solvation calculations have allowed us to reach the fourth era of MD applications in which one can often derive both accurate structure and accurate relative free energies from molecular dynamics trajectories. We illustrate such applications on nucleic acid duplexes, RNA hairpins, protein folding trajectories, and protein−ligand, protein−protein, and protein−nucleic acid interactions.

3,965 citations

Related Papers (5)