scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Identifying best existing practice for characterization modeling in life cycle impact assessment

TL;DR: In this article, the authors performed a study for the Joint Research Centre of the European Commission (JRC) to identify the best among existing characterization models and provide recommendations to the LCA practitioner.
Abstract: Life cycle impact assessment (LCIA) is a field of active development. The last decade has seen prolific publication of new impact assessment methods covering many different impact categories and providing characterization factors that often deviate from each other for the same substance and impact. The LCA standard ISO 14044 is rather general and unspecific in its requirements and offers little help to the LCA practitioner who needs to make a choice. With the aim to identify the best among existing characterization models and provide recommendations to the LCA practitioner, a study was performed for the Joint Research Centre of the European Commission (JRC). Existing LCIA methods were collected and their individual characterization models identified at both midpoint and endpoint levels and supplemented with other environmental models of potential use for LCIA. No new developments of characterization models or factors were done in the project. From a total of 156 models, 91 were short listed as possible candidates for a recommendation within their impact category. Criteria were developed for analyzing the models within each impact category. The criteria addressed both scientific qualities and stakeholder acceptance. The criteria were reviewed by external experts and stakeholders and applied in a comprehensive analysis of the short-listed characterization models (the total number of criteria varied between 35 and 50 per impact category). For each impact category, the analysis concluded with identification of the best among the existing characterization models. If the identified model was of sufficient quality, it was recommended by the JRC. Analysis and recommendation process involved hearing of both scientific experts and stakeholders. Recommendations were developed for 14 impact categories at midpoint level, and among these recommendations, three were classified as “satisfactory” while ten were “in need of some improvements” and one was so weak that it has “to be applied with caution.” For some of the impact categories, the classification of the recommended model varied with the type of substance. At endpoint level, recommendations were only found relevant for three impact categories. For the rest, the quality of the existing methods was too weak, and the methods that came out best in the analysis were classified as “interim,” i.e., not recommended by the JRC but suitable to provide an initial basis for further development. The level of characterization modeling at midpoint level has improved considerably over the last decade and now also considers important aspects like geographical differentiation and combination of midpoint and endpoint characterization, although the latter is in clear need for further development. With the realization of the potential importance of geographical differentiation comes the need for characterization models that are able to produce characterization factors that are representative for different continents and still support aggregation of impact scores over the whole life cycle. For the impact categories human toxicity and ecotoxicity, we are now able to recommend a model, but the number of chemical substances in common use is so high that there is a need to address the substance data shortage and calculate characterization factors for many new substances. Another unresolved issue is the need for quantitative information about the uncertainties that accompany the characterization factors. This is still only adequately addressed for one or two impact categories at midpoint, and this should be a focus point in future research. The dynamic character of LCIA research means that what is best practice will change quickly in time. The characterization methods presented in this paper represent what was best practice in 2008–2009.
Citations
More filters
Journal ArticleDOI
TL;DR: The ReCiPe2016 method as discussed by the authors provides a state-of-the-art method to convert life cycle inventories to a limited number of life cycle impact scores on midpoint and endpoint level.
Abstract: Life cycle impact assessment (LCIA) translates emissions and resource extractions into a limited number of environmental impact scores by means of so-called characterisation factors. There are two mainstream ways to derive characterisation factors, i.e. at midpoint level and at endpoint level. To further progress LCIA method development, we updated the ReCiPe2008 method to its version of 2016. This paper provides an overview of the key elements of the ReCiPe2016 method. We implemented human health, ecosystem quality and resource scarcity as three areas of protection. Endpoint characterisation factors, directly related to the areas of protection, were derived from midpoint characterisation factors with a constant mid-to-endpoint factor per impact category. We included 17 midpoint impact categories. The update of ReCiPe provides characterisation factors that are representative for the global scale instead of the European scale, while maintaining the possibility for a number of impact categories to implement characterisation factors at a country and continental scale. We also expanded the number of environmental interventions and added impacts of water use on human health, impacts of water use and climate change on freshwater ecosystems and impacts of water use and tropospheric ozone formation on terrestrial ecosystems as novel damage pathways. Although significant effort has been put into the update of ReCiPe, there is still major improvement potential in the way impact pathways are modelled. Further improvements relate to a regionalisation of more impact categories, moving from local to global species extinction and adding more impact pathways. Life cycle impact assessment is a fast evolving field of research. ReCiPe2016 provides a state-of-the-art method to convert life cycle inventories to a limited number of life cycle impact scores on midpoint and endpoint level.

1,624 citations

Journal ArticleDOI
06 Jun 2014-Science
TL;DR: Life Cycle Assessment constitutes a viable screening tool that can pinpoint environmental hotspots in complex value chains, but it is cautioned that completeness in scope comes at the price of simplifications and uncertainties.
Abstract: In the modern economy, international value chains--production, use, and disposal of goods--have global environmental impacts. Life Cycle Assessment (LCA) aims to track these impacts and assess them from a systems perspective, identifying strategies for improvement without burden shifting. We review recent developments in LCA, including existing and emerging applications aimed at supporting environmentally informed decisions in policy-making, product development and procurement, and consumer choices. LCA constitutes a viable screening tool that can pinpoint environmental hotspots in complex value chains, but we also caution that completeness in scope comes at the price of simplifications and uncertainties. Future advances of LCA in enhancing regional detail and accuracy as well as broadening the assessment to economic and social aspects will make it more relevant for producers and consumers alike.

888 citations

Journal ArticleDOI
TL;DR: The first green chemistry metrics, the E factor (kgs waste/kg product) and atom economy (mol wt of product/sum of mol wts of starting materials), were introduced in the early 1990s and were actually green chemistry avant la lettre as mentioned in this paper.
Abstract: The first green chemistry metrics—the E factor (kgs waste/kg product) and atom economy (mol wt of product/sum of mol wts of starting materials)—were introduced in the early 1990s and were actually green chemistry avant la lettre. In the last two decades, these two metrics have been adopted worldwide by both academia and industry. The E factor has been refined to distinguish between simple and complete E factors, for example, and to define the system boundaries. Other mass-based metrics such as process mass intensity (PMI) and reaction mass efficiency (RME) have been proposed. However, mass-based metrics need to be augmented by metrics which measure the environmental impact of waste, such as life cycle assessment (LCA), and metrics for assessing the economic viability of products and processes. The application of such metrics in measuring the sustainability of processes for the manufacture of pharmaceuticals and other fine chemicals is discussed in detail. Mass-based metrics alone are not sufficient to mea...

543 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the challenges for life cycle assessment arising from the complexity of food systems, and recommend research priorities for both scientific development and improvements in practical implementation, including addressing issues related to: the distinction between technosphere and ecosphere; the most appropriate functional unit; the multi-functionality of biological systems; and the modelling of the emissions and how this links with life cycle impact assessment.

407 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the usefulness of different types of life cycle assessment (LCA) studies of electrified vehicles to provide robust and relevant stakeholder information, and present synthesized conclusions based on 79 papers.
Abstract: The purpose of this review article is to investigate the usefulness of different types of life cycle assessment (LCA) studies of electrified vehicles to provide robust and relevant stakeholder information. It presents synthesized conclusions based on 79 papers. Another objective is to search for explanations to divergence and “complexity” of results found by other overviewing papers in the research field, and to compile methodological learnings. The hypothesis was that such divergence could be explained by differences in goal and scope definitions of the reviewed LCA studies. The review has set special attention to the goal and scope formulation of all included studies. First, completeness and clarity have been assessed in view of the ISO standard’s (ISO 2006a, b) recommendation for goal definition. Secondly, studies have been categorized based on technical and methodological scope, and searched for coherent conclusions. Comprehensive goal formulation according to the ISO standard (ISO 2006a, b) is absent in most reviewed studies. Few give any account of the time scope, indicating the temporal validity of results and conclusions. Furthermore, most studies focus on today’s electric vehicle technology, which is under strong development. Consequently, there is a lack of future time perspective, e.g., to advances in material processing, manufacturing of parts, and changes in electricity production. Nevertheless, robust assessment conclusions may still be identified. Most obvious is that electricity production is the main cause of environmental impact for externally chargeable vehicles. If, and only if, the charging electricity has very low emissions of fossil carbon, electric vehicles can reach their full potential in mitigating global warming. Consequently, it is surprising that almost no studies make this stipulation a main conclusion and try to convey it as a clear message to relevant stakeholders. Also, obtaining resources can be observed as a key area for future research. In mining, leakage of toxic substances from mine tailings has been highlighted. Efficient recycling, which is often assumed in LCA studies of electrified vehicles, may reduce demand for virgin resources and production energy. However, its realization remains a future challenge. LCA studies with clearly stated purposes and time scope are key to stakeholder lessons and guidance. It is also necessary for quality assurance. LCA practitioners studying hybrid and electric vehicles are strongly recommended to provide comprehensive and clear goal and scope formulation in line with the ISO standard (ISO 2006a, b).

383 citations

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

Journal ArticleDOI
06 Mar 2002-JAMA
TL;DR: Fine particulate and sulfur oxide--related pollution were associated with all-cause, lung cancer, and cardiopulmonary mortality and long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopULmonary and lung cancer mortality.
Abstract: ContextAssociations have been found between day-to-day particulate air pollution and increased risk of various adverse health outcomes, including cardiopulmonary mortality. However, studies of health effects of long-term particulate air pollution have been less conclusive.ObjectiveTo assess the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality.Design, Setting, and ParticipantsVital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998.Main Outcome MeasureAll-cause, lung cancer, and cardiopulmonary mortality.ResultsFine particulate and sulfur oxide–related pollution were associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-µg/m3 elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality.ConclusionLong-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality.

7,803 citations

Book
01 Jan 2007
TL;DR: In this article, the authors present a historical overview of climate change science, including changes in atmospheric constituents and radiative forcing, as well as changes in snow, ice, and frozen ground.
Abstract: Summary for policymakers -- Technical summary -- Historical overview of climate change science -- Changes in atmospheric constituents and radiative forcing -- Observations: atmospheric surface and climate change -- Observations: changes in snow, ice, and frozen ground -- Observations: ocean climate change and sea level -- Paleoclimate -- Coupling between changes in the climate system and biogeochemistry -- Climate models and their evaluation -- Understanding and attributing climate change -- Global climate projections -- Regional climate projections -- Annex I: Glossary -- Annex II: Contributors to the IPCC WGI Fourth Assessment Report -- Annex III: Reviewers of the IPCC WGI Fourth Assessment Report -- Annex IV: Acronyms.

7,738 citations

Related Papers (5)