scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Identifying observable carrier-envelope phase effects in laser wakefield acceleration with near-single-cycle pulses

02 Apr 2021-Physics of Plasmas (AIP Publishing LLC AIP Publishing)-Vol. 28, Iss: 4, pp 043101
TL;DR: In this paper, the authors show how the plasma response becomes asymmetric in the plane of laser polarization, and dependent on the carrier-envelope phase (CEP) of the laser pulse.
Abstract: Driving laser wakefield acceleration with extremely short, near single-cycle laser pulses is crucial to the realization of an electron source that can operate at kHz-repetition rate while relying on modest laser energy. It is also interesting from a fundamental point of view, as the ponderomotive approximation is no longer valid for such short pulses. Through particle-in-cell simulations, we show how the plasma response becomes asymmetric in the plane of laser polarization, and dependent on the carrier-envelope phase (CEP) of the laser pulse. For the case of self-injection, this in turn strongly affects the initial conditions of injected electrons, causing collective betatron oscillations of the electron beam. As a result, the electron beam pointing, electron energy spectrum, and the direction of emitted betatron radiation become CEP dependent. For injection in a density gradient, the effect on beam pointing is reduced and the electron energy spectrum is CEP independent, as electron injection is mostly longitudinal and mainly determined by the density gradient. Our results highlight the importance of controlling the CEP in this regime for producing stable and reproducible relativistic electron beams and identify how CEP effects may be observed in experiments. In the future, CEP control may become an additional tool to control the energy spectrum or pointing of the accelerated electron beam.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate laser wakefield acceleration of quasi-monoenergetic electron bunches up to 15 MeV at 1 kHz repetition rate with 2.5 pC charge per bunch and a core with < 7 mrad beam divergence.
Abstract: We demonstrate laser wakefield acceleration of quasi-monoenergetic electron bunches up to 15 MeV at 1 kHz repetition rate with 2.5 pC charge per bunch and a core with < 7 mrad beam divergence. Acceleration is driven by 5 fs, < 2.7 mJ laser pulses incident on a thin, near-critical density hydrogen gas jet. Low beam divergence is attributed to reduced sensitivity to laser carrier envelope phase slip, achieved in two ways using laser polarization and gas jet control: (1) electron injection into the wake on the gas jet's plasma density downramp, and (2) use of circularly polarized drive pulses. Under conditions of mild wavebreaking in the downramp, electron beam profiles have a 2D Lorentzian shape consistent with a kappa electron energy distribution. Such distributions had previously been observed only in space or dusty plasmas. We attribute this shape to the strongly correlated collisionless bunch confined by the quadratic wakefield bubble potential, where transverse velocity space diffusion is imparted to the bunch by the red-shifted laser field in the bubble.

16 citations

Posted Content
TL;DR: In this paper, the authors demonstrate laser wakefield acceleration of quasi-monoenergetic electron bunches up to 15 MeV at 1 kHz repetition rate with 2.5 pC charge per bunch and a core with < 7 mrad beam divergence.
Abstract: We demonstrate laser wakefield acceleration of quasi-monoenergetic electron bunches up to 15 MeV at 1 kHz repetition rate with 2.5 pC charge per bunch and a core with < 7 mrad beam divergence. Acceleration is driven by 5 fs, < 2.7 mJ laser pulses incident on a thin, near-critical density hydrogen gas jet. Low beam divergence is attributed to reduced sensitivity to laser carrier envelope phase slip, achieved in two ways using laser polarization and gas jet control: (1) electron injection into the wake on the gas jet's plasma density downramp, and (2) use of circularly polarized drive pulses. Under conditions of mild wavebreaking in the downramp, electron beam profiles have a 2D Lorentzian shape consistent with a kappa electron energy distribution. Such distributions had previously been observed only in space or dusty plasmas. We attribute this shape to the strongly correlated collisionless bunch confined by the quadratic wakefield bubble potential, where transverse velocity space diffusion is imparted to the bunch by the red-shifted laser field in the bubble.

16 citations


Cites background or methods from "Identifying observable carrier-enve..."

  • ...The bubble centroid oscillation is caused by the slip of the laser pulse envelope with respect to the laser field oscillations [62,63]—the CEP slip—and manifests as a bubble modulation frequency Δωm=ω0 ∼ ðvp − vgÞ=c, where ω0 is the laser central frequency and vp and vg are the phase and group velocities, respectively, in the plasma....

    [...]

  • ...As mentioned, prior simulations [62,63] show that a few-cycle LP driver pulse oscillates the bubble along the laser polarization direction, distorting the bubble’s accelerating field and the accelerated bunch....

    [...]

  • ...One potential source of divergence associated with few-cycle drivers is presented in prior simulations [62,63]: the CEP slip caused by the difference in the pulse’s phase and group velocities in plasma....

    [...]

Journal ArticleDOI
TL;DR: In this article , the authors used near-single-cycle laser pulses with a controlled carrier-envelope phase to show that the actual waveform of the laser field has a clear impact on the plasma response.
Abstract: The interaction of ultraintense laser pulses with an underdense plasma is used in laser-plasma acceleration to create compact sources of ultrashort pulses of relativistic electrons and x rays. The accelerating structure is a plasma wave, or wakefield, that is excited by the laser ponderomotive force, a force that is usually assumed to depend solely on the laser envelope and not on its exact waveform. Here, we use near-single-cycle laser pulses with a controlled carrier-envelope phase to show that the actual waveform of the laser field has a clear impact on the plasma response. The beam pointing of our relativistic electron beam oscillates in phase with the carrier-envelope phase of the laser, at an amplitude of 15 mrad, or 30% of the beam divergence. Numerical simulations explain this observation through asymmetries in the injection and acceleration of the electron beam, which are locked to the carrier-envelope phase. These results imply that we achieve waveform control of relativistic electron dynamics. Our results pave the way to high-precision, subcycle control of electron injection in plasma accelerators, enabling the production of attosecond relativistic electron bunches and x rays.Received 26 May 2021Revised 10 December 2021Accepted 11 January 2022DOI:https://doi.org/10.1103/PhysRevX.12.011036Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasHigh intensity laser-plasma interactionsLaser wakefield accelerationPonderomotive effectsUltrashort pulsesAccelerators & BeamsPlasma PhysicsAtomic, Molecular & Optical

8 citations

Journal ArticleDOI
TL;DR: In this article, a long-propagating plasma bubble executing undulatory motion can be produced in the wake of two copropagating laser pulses: a near-singlecycle injector and a multicycle driver.
Abstract: We demonstrate that a long-propagating plasma bubble executing undulatory motion can be produced in the wake of two copropagating laser pulses: a near-single-cycle injector and a multicycle driver. When the undulation amplitude exceeds the analytically derived threshold, highly localized injections of plasma electrons into the bubble are followed by their long-distance acceleration. While the locations of the injection regions are controlled by the carrier-envelope phase (CEP) of the injector pulse, the monoenergetic spectrum of the accelerated subfemtosecond high-charge electron bunches is shown to be nearly CEP independent.

7 citations

Journal ArticleDOI
TL;DR: In this paper , the progress on parametric and hollow-core fiber waveform synthesizers is discussed, including newly developed seeding schemes; absolute, relative, and spectral phase measurement; and control techniques suitable for synthesizers.
Abstract: The quest for ever‐shorter optical pulses has been ongoing for over half a century. Although few‐cycle pulses have been generated for nearly 40 years, pulse lengths below the single‐cycle limit have remained an elusive goal for a long time. For this purpose, optical waveform synthesizers, generating high‐energy, high‐average‐power pulses via coherent combination of multiple pulses covering different spectral regions, have been recently developed. They allow unprecedented control over the generated optical waveforms, spanning an extremely broad spectral range from ultraviolet to infrared. Such control allows for steering strong‐field interactions with increased degrees of freedom. When driving high‐harmonic generation, tailored waveforms can produce bright attosecond pulse trains and even isolated attosecond pulses with tunable spectra up to the soft X‐ray range. In this paper recent progress on parametric and hollow‐core fiber waveform synthesizers is discussed. Newly developed seeding schemes; absolute, relative, and spectral phase measurement; and control techniques suitable for synthesizers are described. The progress on serial and parallel waveform synthesis based on Ti:sapphire and Ytterbium laser systems and their latest applications in high‐harmonic generation in gaseous and solid media, attosecond science, and laser wakefield acceleration is discussed.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, an intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force, and electrons trapped in the wake can be accelerated to high energy.
Abstract: An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density ${10}^{18}$W/${\mathrm{cm}}^{2}$ shone on plasmas of densities ${10}^{18}$ ${\mathrm{cm}}^{\ensuremath{-}3}$ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

3,867 citations


"Identifying observable carrier-enve..." refers background in this paper

  • ...Laser wakefield accelerators (LWFA) [1–5] are tabletop setups that can produce relativistic electron bunches with an extremely short (fs) bunch duration [6] and a small (μm) source size [7]....

    [...]

  • ...[1] T....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the basic physics of laser pulse evolution in underdense plasmas is also reviewed, including the propagation, self-focusing, and guiding of laser pulses in uniform density channels and with preformed density channels.
Abstract: Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

2,108 citations


"Identifying observable carrier-enve..." refers background in this paper

  • ...[2] E....

    [...]

  • ...Laser wakefield accelerators (LWFA) [1–5] are tabletop setups that can produce relativistic electron bunches with an extremely short (fs) bunch duration [6] and a small (μm) source size [7]....

    [...]

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: It is demonstrated that this randomization of electrons in phase space can be suppressed and that the quality of the electron beams can be dramatically enhanced.
Abstract: Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser-plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m(-1)). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.

1,854 citations


"Identifying observable carrier-enve..." refers background in this paper

  • ...Laser wakefield accelerators (LWFA) [1–5] are tabletop setups that can produce relativistic electron bunches with an extremely short (fs) bunch duration [6] and a small (μm) source size [7]....

    [...]

  • ...[3] J....

    [...]

Journal ArticleDOI
08 Jul 2004-Nature
TL;DR: A laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) and opens the way for compact and tunable high-brightness sources of electrons and radiation.
Abstract: Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m-1 (refs 1–3) These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators4,5 as compact next-generation sources of energetic electrons and radiation To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread1,2,3, which limits potential applications Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance The results open the way for compact and tunable high-brightness sources of electrons and radiation

1,749 citations

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: High-resolution energy measurements of the electron beams produced from intense laser–plasma interactions are reported, showing that—under particular plasma conditions—it is possible to generate beams of relativistic electrons with low divergence and a small energy spread.
Abstract: High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators.

1,739 citations


"Identifying observable carrier-enve..." refers background in this paper

  • ...Laser wakefield accelerators (LWFA) [1–5] are tabletop setups that can produce relativistic electron bunches with an extremely short (fs) bunch duration [6] and a small (μm) source size [7]....

    [...]

  • ...[4] S....

    [...]