scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Identifying prioritized planting areas for medicinal plant Thesium chinense Turcz. under climate change in China

01 Dec 2021-Ecological Informatics (Elsevier)-Vol. 66, pp 101459
TL;DR: In this article, the authors used the MaxEnt model to predict the suitable habitat for Thesium chinense Turcz and determined the potential migration trends of its suitable areas, and evaluated the main environmental variables that affect the distribution of T. chinense.
About: This article is published in Ecological Informatics.The article was published on 2021-12-01. It has received 2 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors simulated the suitable area of S. divaricata under current (1970-2000) and four climate change scenarios (i.e., SSP1-2.6, SSP2-4.5 and SSP5-8.5).

2 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1-km spatial resolution).
Abstract: We developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1-km spatial resolution). The climate elements considered were monthly precipitation and mean, minimum, and maximum temperature. Input data were gathered from a variety of sources and, where possible, were restricted to records from the 1950–2000 period. We used the thin-plate smoothing spline algorithm implemented in the ANUSPLIN package for interpolation, using latitude, longitude, and elevation as independent variables. We quantified uncertainty arising from the input data and the interpolation by mapping weather station density, elevation bias in the weather stations, and elevation variation within grid cells and through data partitioning and cross validation. Elevation bias tended to be negative (stations lower than expected) at high latitudes but positive in the tropics. Uncertainty is highest in mountainous and in poorly sampled areas. Data partitioning showed high uncertainty of the surfaces on isolated islands, e.g. in the Pacific. Aggregating the elevation and climate data to 10 arc min resolution showed an enormous variation within grid cells, illustrating the value of high-resolution surfaces. A comparison with an existing data set at 10 arc min resolution showed overall agreement, but with significant variation in some regions. A comparison with two high-resolution data sets for the United States also identified areas with large local differences, particularly in mountainous areas. Compared to previous global climatologies, ours has the following advantages: the data are at a higher spatial resolution (400 times greater or more); more weather station records were used; improved elevation data were used; and more information about spatial patterns of uncertainty in the data is available. Owing to the overall low density of available climate stations, our surfaces do not capture of all variation that may occur at a resolution of 1 km, particularly of precipitation in mountainous areas. In future work, such variation might be captured through knowledgebased methods and inclusion of additional co-variates, particularly layers obtained through remote sensing. Copyright  2005 Royal Meteorological Society.

17,977 citations

Journal ArticleDOI
TL;DR: In this paper, the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data was introduced, which is a general-purpose machine learning method with a simple and precise mathematical formulation.

13,120 citations

Journal ArticleDOI
TL;DR: In this paper, the authors created a new dataset of spatially interpolated monthly climate data for global land areas at a very high spatial resolution (approximately 1 km2), including monthly temperature (minimum, maximum and average), precipitation, solar radiation, vapour pressure and wind speed, aggregated across a target temporal range of 1970-2000, using data from between 9000 and 60,000 weather stations.
Abstract: We created a new dataset of spatially interpolated monthly climate data for global land areas at a very high spatial resolution (approximately 1 km2). We included monthly temperature (minimum, maximum and average), precipitation, solar radiation, vapour pressure and wind speed, aggregated across a target temporal range of 1970–2000, using data from between 9000 and 60 000 weather stations. Weather station data were interpolated using thin-plate splines with covariates including elevation, distance to the coast and three satellite-derived covariates: maximum and minimum land surface temperature as well as cloud cover, obtained with the MODIS satellite platform. Interpolation was done for 23 regions of varying size depending on station density. Satellite data improved prediction accuracy for temperature variables 5–15% (0.07–0.17 °C), particularly for areas with a low station density, although prediction error remained high in such regions for all climate variables. Contributions of satellite covariates were mostly negligible for the other variables, although their importance varied by region. In contrast to the common approach to use a single model formulation for the entire world, we constructed the final product by selecting the best performing model for each region and variable. Global cross-validation correlations were ≥ 0.99 for temperature and humidity, 0.86 for precipitation and 0.76 for wind speed. The fact that most of our climate surface estimates were only marginally improved by use of satellite covariates highlights the importance having a dense, high-quality network of climate station data.

7,558 citations

Journal ArticleDOI
TL;DR: An overview of recent advances in species distribution models, and new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales are suggested.
Abstract: In the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory.

5,620 citations

Journal ArticleDOI
TL;DR: Species distribution models (SDMs) as mentioned in this paper are numerical tools that combine observations of species occurrence or abundance with environmental estimates, and are used to gain ecological and evolutionary insights and to predict distributions across landscapes, sometimes requiring extrapolation in space and time.
Abstract: Species distribution models (SDMs) are numerical tools that combine observations of species occurrence or abundance with environmental estimates. They are used to gain ecological and evolutionary insights and to predict distributions across landscapes, sometimes requiring extrapolation in space and time. SDMs are now widely used across terrestrial, freshwater, and marine realms. Differences in methods between disciplines reflect both differences in species mobility and in “established use.” Model realism and robustness is influenced by selection of relevant predictors and modeling method, consideration of scale, how the interplay between environmental and geographic factors is handled, and the extent of extrapolation. Current linkages between SDM practice and ecological theory are often weak, hindering progress. Remaining challenges include: improvement of methods for modeling presence-only data and for model selection and evaluation; accounting for biotic interactions; and assessing model uncertainty.

5,076 citations