scispace - formally typeset
Search or ask a question
Proceedings Article

Image Processing

01 Jan 1994-
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.
Citations
More filters
Journal ArticleDOI
TL;DR: Probiotic modulation of the gut microbiome is demonstrated, a novel gene network involved in lipid metabolism is highlighted, an insight into how the microbiome regulates molecules involved in cholesterol and triglyceride metabolism is provided, and a new potential role for L. rhamnosus is revealed in the treatment of lipid disorders.
Abstract: Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism

163 citations

Journal ArticleDOI
TL;DR: A novel deep multiplicative integration gating function is proposed, which answers the question of what-and-where to match for effective person re-id and is designed to be end-to-end trainable to characterize local pairwise feature interactions in a spatially aligned manner.

159 citations


Cites background from "Image Processing"

  • ...Some metric learning approaches [Chen et al., 2016; Huang et al., 2016; Li et al., 2013; Wang et al., 2015c; Wang et al., 2017b; Wang et al., 2013b; Wu and Wang, 2017; Liao et al., 2015] make attempts to extract low-level features from local regions and perform local matching within each subregions....

    [...]

  • ...…al., 2013; Wu et al., 2017b] or seeking proper metrics to measure the cross-view appearance similarity [Xiong et al., 2014; Kostinger et al., 2012; Li et al., 2012; Pedagadi et al., 2013; Wang et al., 2015b; Wu et al., 2013; Wang et al., 2015a; Wang et al., 2016b; Ma et al., 2014; Li et al., 2013]....

    [...]

Journal ArticleDOI
TL;DR: A multiscale fiber network-based model for the mycelium is developed and validated which reproduces the tensile and compressive behavior of the material.
Abstract: We study a unique biomaterial developed from fungal mycelium, the vegetative part and the root structure of fungi. Mycelium has a filamentous network structure with mechanics largely controlled by filament elasticity and branching, and network density. We report the morphological and mechanical characterization of mycelium through an integrated experimental and computational approach. The monotonic mechanical behavior of the mycelium is non-linear both in tension and compression. The material exhibits considerable strain hardening before rupture under tension, it mimics the open cell foam behavior under compression and exhibits hysteresis and the Mullins effect when subjected to cyclic loading. Based on our morphological characterization and experimental observations, we develop and validate a multiscale fiber network-based model for the mycelium which reproduces the tensile and compressive behavior of the material.

159 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated cerebellar volumes derived from volumetric magnetic resonance imaging of 37 first-episode patients with schizophrenia, schizophreniform or schizoaffective disorder and 18 healthy controls matched for age, gender and handedness.
Abstract: Recent studies indicate that morphological and functional abnormalities of the cerebellum are associated with schizophrenia. Since the cerebellum is crucial for motor coordination, one may ask whether the respective changes are associated with motor dysfunction in the disease. To test these hypotheses in a clinical study, we investigated cerebellar volumes derived from volumetric magnetic resonance imaging of 37 first-episode patients with schizophrenia, schizophreniform or schizoaffective disorder and 18 healthy controls matched for age, gender and handedness. To control for potential interindividual differences in head size, intracranial volume was entered as a covariate. Neurological soft signs (NSS) were examined after remission of acute symptoms. Compared with the controls, patients had significantly smaller cerebellar volumes for both hemispheres. Furthermore, NSS in patients were inversely correlated with tissue volume of the right cerebellar hemisphere partialling for intracranial volume. No associations were detected between cerebellar volumes and psychopathological measures obtained at hospital admission when patients were in the acute psychotic state or after remission, treatment duration until remission, treatment response or prognostic factors, respectively. These findings support the hypothesis of cerebellar involvement in schizophrenia and indicate that the respective changes are associated with NSS.

159 citations

Journal ArticleDOI
TL;DR: The data suggest that pharmacological chaperoning of nAChRs by nicotine can alter the physiology of ER processes and generate a β2enhanced-ER-export mutant subunit that mimics two regions of the β4 subunit sequence: the presence of an ER export motif and the absence of anER retention/retrieval motif.
Abstract: The up-regulation of α4β2* nicotinic acetylcholine receptors (nAChRs) by chronic nicotine is a cell-delimited process and may be necessary and sufficient for the initial events of nicotine dependence. Clinical literature documents an inverse relationship between a person’s history of tobacco use and his or her susceptibility to Parkinson’s disease; this may also result from up-regulation. This study visualizes and quantifies the subcellular mechanisms involved in nicotine-induced nAChR up-regulation by using transfected fluorescent protein (FP)-tagged α4 nAChR subunits and an FP-tagged Sec24D endoplasmic reticulum (ER) exit site marker. Total internal reflection fluorescence microscopy shows that nicotine (0.1 µM for 48 h) up-regulates α4β2 nAChRs at the plasma membrane (PM), despite increasing the fraction of α4β2 nAChRs that remain in near-PM ER. Pixel-resolved normalized Forster resonance energy transfer microscopy between α4-FP subunits shows that nicotine stabilizes the (α4)2(β2)3 stoichiometry before the nAChRs reach the trans-Golgi apparatus. Nicotine also induces the formation of additional ER exit sites (ERES). To aid in the mechanistic analysis of these phenomena, we generated a β2enhanced-ER-export mutant subunit that mimics two regions of the β4 subunit sequence: the presence of an ER export motif and the absence of an ER retention/retrieval motif. The α4β2enhanced-ER-export nAChR resembles nicotine-exposed nAChRs with regard to stoichiometry, intracellular mobility, ERES enhancement, and PM localization. Nicotine produces only small additional PM up-regulation of α4β2enhanced-ER-export receptors. The experimental data are simulated with a model incorporating two mechanisms: (1) nicotine acts as a stabilizing pharmacological chaperone for nascent α4β2 nAChRs in the ER, eventually increasing PM receptors despite a bottleneck(s) in ER export; and (2) removal of the bottleneck (e.g., by expression of the β2enhanced-ER-export subunit) is sufficient to increase PM nAChR numbers, even without nicotine. The data also suggest that pharmacological chaperoning of nAChRs by nicotine can alter the physiology of ER processes.

158 citations


Cites methods from "Image Processing"

  • ...For quantification, ERES ROI were demarcated using intensity-based thresholding and counted for each cell using the particle analysis feature in ImageJ (version 1.44 or later; Abramoff et al., 2004)....

    [...]

References
More filters
Journal ArticleDOI
01 Nov 1973
TL;DR: These results indicate that the easily computable textural features based on gray-tone spatial dependancies probably have a general applicability for a wide variety of image-classification applications.
Abstract: Texture is one of the important characteristics used in identifying objects or regions of interest in an image, whether the image be a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily computable textural features based on gray-tone spatial dependancies, and illustrates their application in category-identification tasks of three different kinds of image data: photomicrographs of five kinds of sandstones, 1:20 000 panchromatic aerial photographs of eight land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery containing seven land-use categories. We use two kinds of decision rules: one for which the decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 percent for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

20,442 citations

Book
03 Oct 1988
TL;DR: This chapter discusses two Dimensional Systems and Mathematical Preliminaries and their applications in Image Analysis and Computer Vision, as well as image reconstruction from Projections and image enhancement.
Abstract: Introduction. 1. Two Dimensional Systems and Mathematical Preliminaries. 2. Image Perception. 3. Image Sampling and Quantization. 4. Image Transforms. 5. Image Representation by Stochastic Models. 6. Image Enhancement. 7. Image Filtering and Restoration. 8. Image Analysis and Computer Vision. 9. Image Reconstruction From Projections. 10. Image Data Compression.

8,504 citations

Journal ArticleDOI
TL;DR: The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods.
Abstract: Embedded zerotree wavelet (EZW) coding, introduced by Shapiro (see IEEE Trans. Signal Processing, vol.41, no.12, p.3445, 1993), is a very effective and computationally simple technique for image compression. We offer an alternative explanation of the principles of its operation, so that the reasons for its excellent performance can be better understood. These principles are partial ordering by magnitude with a set partitioning sorting algorithm, ordered bit plane transmission, and exploitation of self-similarity across different scales of an image wavelet transform. Moreover, we present a new and different implementation based on set partitioning in hierarchical trees (SPIHT), which provides even better performance than our previously reported extension of EZW that surpassed the performance of the original EZW. The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods. In addition, the new coding and decoding procedures are extremely fast, and they can be made even faster, with only small loss in performance, by omitting entropy coding of the bit stream by the arithmetic code.

5,890 citations

Journal ArticleDOI
TL;DR: Eight constructs decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent a cellular valves and intact chamber geometry that could generate pump function in a modified working heart preparation.
Abstract: About 3,000 individuals in the United States are awaiting a donor heart; worldwide, 22 million individuals are living with heart failure. A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Generating a bioartificial heart requires engineering of cardiac architecture, appropriate cellular constituents and pump function. We decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent acellular valves and intact chamber geometry. To mimic cardiac cell composition, we reseeded these constructs with cardiac or endothelial cells. To establish function, we maintained eight constructs for up to 28 d by coronary perfusion in a bioreactor that simulated cardiac physiology. By day 4, we observed macroscopic contractions. By day 8, under physiological load and electrical stimulation, constructs could generate pump function (equivalent to about 2% of adult or 25% of 16-week fetal heart function) in a modified working heart preparation.

2,454 citations

Journal ArticleDOI
01 Sep 1997
TL;DR: This paper examines automated iris recognition as a biometrically based technology for personal identification and verification from the observation that the human iris provides a particularly interesting structure on which to base a technology for noninvasive biometric assessment.
Abstract: This paper examines automated iris recognition as a biometrically based technology for personal identification and verification. The motivation for this endeavor stems from the observation that the human iris provides a particularly interesting structure on which to base a technology for noninvasive biometric assessment. In particular the biomedical literature suggests that irises are as distinct as fingerprints or patterns of retinal blood vessels. Further, since the iris is an overt body, its appearance is amenable to remote examination with the aid of a machine vision system. The body of this paper details issues in the design and operation of such systems. For the sake of illustration, extant systems are described in some amount of detail.

2,046 citations