scispace - formally typeset
Search or ask a question
Proceedings Article

Image Processing

01 Jan 1994-
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.
Citations
More filters
Journal ArticleDOI
TL;DR: Macrophages that highly express 14-3-3η undergo TNF-α-induced necroptosis with damage to the cellular structure, resulting in the secretion of 14-1-3 η into the extracellular space, providing a novel mechanism for 14-2-2η level increase in the RA synovial fluid.
Abstract: 14-3-3η is an intracellular protein also detected in the serum and synovial fluid of patients with rheumatoid arthritis (RA). It is closely related to disease activity and anti-cyclic citrullinated peptide antibody levels. However, the main source of 14-3-3η and the mechanism of its release into the extracellular space remain unclear. Addressing these two points was the main goal of the current study. The source of 14-3-3η was investigated by immunostaining RA synovial tissue. Fibroblast-like synoviocytes, CD4+ cells, and macrophages were selected as candidates among the various cell types in the synovial tissue. Phosphorylation of mixed-lineage kinase domain-like pseudokinase (MLKL) and cell death of macrophages were studied by phalloidin staining and electron microscopy after stimulation with an oxidative stress inducer (diamide) or tumour necrosis factor (TNF)-α. Extracellular 14-3-3η protein levels were examined by western blotting. Macrophages from the synovial tissue from RA, but not osteoarthritis, showed dense and widespread cytoplasmic staining for the 14-3-3η protein, co-localized with peptidylarginine deiminase 4. Swelling and membrane rupture of macrophages were induced by treatment with TNF-α, but not interleukin (IL) 6/soluble IL-6 receptor (sIL-6R). Increased MLKL phosphorylation followed by necroptosis was also induced in TNF-α-stimulated macrophages. Necrostatin-1, a necroptosis inhibitor, antagonized MLKL phosphorylation. High levels of 14-3-3η were detected in the culture supernatants of macrophages stimulated with diamide and TNF-α, but not IL-6/sIL-6R. Macrophages that highly express 14-3-3η undergo TNF-α-induced necroptosis with damage to the cellular structure, resulting in the secretion of 14-3-3η into the extracellular space. The current study provides a novel mechanism for 14-3-3η level increase in the RA synovial fluid.

13 citations

Journal ArticleDOI
TL;DR: In this article, X-ray diffraction (XRD) analysis revealed that ZnO nanoparticles were composed of a single halo-co-precipitation method using different complexing agents.
Abstract: ZnO nanoparticles have been synthesised via a co-precipitation method using different complexing agents. X-ray diffraction (XRD) analysis revealed that ZnO nanoparticles were composed of a single h...

13 citations

Journal ArticleDOI
TL;DR: Cytotoxic granule-positive CTLs were in the minority in MD salivary glands, and this regulation might relate to PD-1 signals like the state of exhaustion and anergy.
Abstract: Objectives. Immunoglobulin (Ig) G4-related dacryoadenitis and sialadenitis, the so-called Mikulicz's disease (MD), is a chronic inflammatory disease. However, little is known about its pathogenesis...

13 citations

Proceedings ArticleDOI
01 May 2017
TL;DR: Hardware realization of various spatial domain masking operations is proposed based on the hardware consumption, speed of the design of each architecture and measure of the image quality is given by comparing the outputs of both MATLAB & Xilinx FPGA and then by calculating the MSE.
Abstract: Various filtering techniques have been the core of image processing since the very inception of image enhancement techniques. Spatial domain filtering in image processing deals with various practical applications like image sharpening, blurring, noise removal etc. Former refers to the filter dealing with high frequencies while the latter is resulted due to low frequency operations. The versatility of spatial filtering is more compared to transform domain as it can be used for both linear and nonlinear filtering. Image smoothing is realized directly by manipulating the intensity values of the original image by the application of spatial masks or windows. It results in reduction of small details and noise from an image. This paper proposes hardware realization of various spatial domain masking operations. The results are based on the hardware consumption, speed of the design of each architecture. Measure of the image quality is given by comparing the outputs of both MATLAB & Xilinx FPGA and then by calculating the MSE. Practical implementation all the techniques are represented and explained through appropriate outputs.

13 citations


Cites background from "Image Processing"

  • ...It is helpful in object detection due to its ability to represent the overall object of interest without removing any useful information, which is achieved by [1] harmonizing the intensity of less details with the background and the part having more information becomes more prominent....

    [...]

  • ...It is performed on the 8-neighbors [1] of the centre pixel....

    [...]

  • ...Mathematical representation of median filtering [1] is given in (6)....

    [...]

  • ...m I x y m I x y m I x y (1) Representing (1) in generalized form [1]...

    [...]

Journal ArticleDOI
TL;DR: In this paper, male spontaneously hypertensive rats and normotensive Wistar Kyoto (WKY) rats were exposed to 100% soy-based biodiesel exhaust (100SBDE; 0, 50, 150 and 500μg/m3) by inhalation, 4h/day for 4 weeks (5 days/week).
Abstract: Accumulating evidence suggests a deleterious role for urban air pollution in central nervous system (CNS) diseases and neurodevelopmental disorders. Microglia, the resident innate immune cells and sentinels in the brain, are a common source of neuroinflammation and are implicated in air pollution-induced CNS effects. While renewable energy, such as soy-based biofuel, is of increasing public interest, there is little information on how soy biofuel may affect the brain, especially in people with preexisting disease conditions. To address this, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats were exposed to 100% Soy-based Biodiesel Exhaust (100SBDE; 0, 50, 150 and 500μg/m3) by inhalation, 4h/day for 4 weeks (5 days/week). Ionized calcium-binding adapter molecule-1 (IBA-1) staining of microglia in the substantia nigra revealed significant changes in morphology with 100SBDE exposure in rats from both genotypes, where SHR were less sensitive. Aconitase activity was inhibited in the frontal cortex and cerebellum of WKY rats exposed to 100SBDE. No consistent changes occurred in pro-inflammatory cytokine expression, nitrated protein, or arginase1 expression in brain regions from either rat strain exposed to 100SBDE. However, while IBA-1 mRNA expression was not modified, CX3CR1 mRNA expression was lower in the striatum of 100SBDE exposed rats regardless of genotype, suggesting a downregulation of the fractalkine receptor on microglia in this brain region. Together, these data indicate that while microglia are detecting and responding to 100SBDE exposure with changes in morphology, there is reduced expression of CX3CR1 regardless of genetic background and the activation response is atypical without traditional inflammatory markers of M1 or M2 activation in the brain.

13 citations

References
More filters
Journal ArticleDOI
01 Nov 1973
TL;DR: These results indicate that the easily computable textural features based on gray-tone spatial dependancies probably have a general applicability for a wide variety of image-classification applications.
Abstract: Texture is one of the important characteristics used in identifying objects or regions of interest in an image, whether the image be a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily computable textural features based on gray-tone spatial dependancies, and illustrates their application in category-identification tasks of three different kinds of image data: photomicrographs of five kinds of sandstones, 1:20 000 panchromatic aerial photographs of eight land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery containing seven land-use categories. We use two kinds of decision rules: one for which the decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 percent for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

20,442 citations

Book
03 Oct 1988
TL;DR: This chapter discusses two Dimensional Systems and Mathematical Preliminaries and their applications in Image Analysis and Computer Vision, as well as image reconstruction from Projections and image enhancement.
Abstract: Introduction. 1. Two Dimensional Systems and Mathematical Preliminaries. 2. Image Perception. 3. Image Sampling and Quantization. 4. Image Transforms. 5. Image Representation by Stochastic Models. 6. Image Enhancement. 7. Image Filtering and Restoration. 8. Image Analysis and Computer Vision. 9. Image Reconstruction From Projections. 10. Image Data Compression.

8,504 citations

Journal ArticleDOI
TL;DR: The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods.
Abstract: Embedded zerotree wavelet (EZW) coding, introduced by Shapiro (see IEEE Trans. Signal Processing, vol.41, no.12, p.3445, 1993), is a very effective and computationally simple technique for image compression. We offer an alternative explanation of the principles of its operation, so that the reasons for its excellent performance can be better understood. These principles are partial ordering by magnitude with a set partitioning sorting algorithm, ordered bit plane transmission, and exploitation of self-similarity across different scales of an image wavelet transform. Moreover, we present a new and different implementation based on set partitioning in hierarchical trees (SPIHT), which provides even better performance than our previously reported extension of EZW that surpassed the performance of the original EZW. The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods. In addition, the new coding and decoding procedures are extremely fast, and they can be made even faster, with only small loss in performance, by omitting entropy coding of the bit stream by the arithmetic code.

5,890 citations

Journal ArticleDOI
TL;DR: Eight constructs decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent a cellular valves and intact chamber geometry that could generate pump function in a modified working heart preparation.
Abstract: About 3,000 individuals in the United States are awaiting a donor heart; worldwide, 22 million individuals are living with heart failure. A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Generating a bioartificial heart requires engineering of cardiac architecture, appropriate cellular constituents and pump function. We decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent acellular valves and intact chamber geometry. To mimic cardiac cell composition, we reseeded these constructs with cardiac or endothelial cells. To establish function, we maintained eight constructs for up to 28 d by coronary perfusion in a bioreactor that simulated cardiac physiology. By day 4, we observed macroscopic contractions. By day 8, under physiological load and electrical stimulation, constructs could generate pump function (equivalent to about 2% of adult or 25% of 16-week fetal heart function) in a modified working heart preparation.

2,454 citations

Journal ArticleDOI
01 Sep 1997
TL;DR: This paper examines automated iris recognition as a biometrically based technology for personal identification and verification from the observation that the human iris provides a particularly interesting structure on which to base a technology for noninvasive biometric assessment.
Abstract: This paper examines automated iris recognition as a biometrically based technology for personal identification and verification. The motivation for this endeavor stems from the observation that the human iris provides a particularly interesting structure on which to base a technology for noninvasive biometric assessment. In particular the biomedical literature suggests that irises are as distinct as fingerprints or patterns of retinal blood vessels. Further, since the iris is an overt body, its appearance is amenable to remote examination with the aid of a machine vision system. The body of this paper details issues in the design and operation of such systems. For the sake of illustration, extant systems are described in some amount of detail.

2,046 citations