scispace - formally typeset
Search or ask a question
Proceedings Article

Image Processing

01 Jan 1994-
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.
Citations
More filters
Journal ArticleDOI
TL;DR: The logarithmic image processing (LIP) model is a mathematical framework which provides a specific set of algebraic and functional operations for the processing and analysis of intensity images valued in a bounded range that addresses the edge detection problem using the LIP-model based differentiation.
Abstract: The logarithmic image processing (LIP) model is a mathematical framework which provides a specific set of algebraic and functional operations for the processing and analysis of intensity images valued in a bounded range. The LIP model has been proved to be physically justified by that it is consistent with the multiplicative transmittance and reflectance image formation models, and with some important laws and characteristics of human brightness perception. This article addresses the edge detection problem using the LIP-model based differentiation. First, the LIP model is introduced, in particular, for the gray tones and gray tone functions, which represent intensity values and intensity images, respectively. Then, an extension of these LIP model notions, respectively called gray tone vectors and gray tone vector functions, is studied. Third, the LIP-model based differential operators are presented, focusing on their distinctive properties for image processing. Emphasis is also placed on highlighting the main characteristics of the LIP-model based differentiation. Next, the LIP-Sobel based edge detection technique is studied and applied to edge detection, showing its robustness in locally small changes in scene illumination conditions and its performance in the presence of noise. Its theoretical and practical advantages over several well-known edge detection techniques, such as the techniques of Sobel, Canny, Johnson and Wallis, are shown through a general discussion and illustrated by simulation results on different real images. Finally, a discussion on the role of the LIP-model based differentiation in the current context of edge detection is presented.

67 citations


Cites background or methods from "Image Processing"

  • ...It is one of the fundamental steps in image processing [1], image analysis [2], image pattern recognition [3], computer vision [4], as well as in human vision [5]....

    [...]

  • ...In Johnson’s and Robinson’s edge detection techniques, the gradient operators are the Sobel’s operator [1] and the compass gradient operator [7], respectively....

    [...]

  • ...Its theoretical and practical advantages over the traditional techniques of Sobel [1], Canny [16], Johnson [33] and Wallis [1] are shown through a general discussion and several simulation results on different digital images....

    [...]

  • ...They further argued that the usual addition “+” and scalar multiplication “ ×” operations are not suitable for some important physical settings, such as images formed by transmitted light [41, 42], for human visual perception [5, 43] and in many practical cases of digital images [1, 44]....

    [...]

Journal ArticleDOI
TL;DR: This study shows that the proposed technique was efficient in reducing the amount of exposed gum during smile in all patients in this series.
Abstract: Background:Treatment of excessive gingival display usually involves procedures such as Le Fort impaction or maxillary gingivectomies. The authors propose an alternative technique that reduces the muscular function of the elevator of the upper lip muscle and repositioning of the upper lip.Methods:Fou

67 citations

Journal ArticleDOI
TL;DR: In this article, a series of new stochastic separation theorems are proven for fast non-destructive correction of AI systems, including binary classifiers, which separate the situations with high risk of errors from the situations where the AI systems work properly.

67 citations

Journal ArticleDOI
TL;DR: A new proof of the rate of convergence of wavelet shrinkage that allows us to estimate rather sharply the best shrinkage parameter needed to recover an image from noise-corrupted data and tomographic reconstruction computations that support the hypothesis that near-optimal shrinkage parameters can be derived.
Abstract: Because the Radon transform is a smoothing transform, any noise in the Radon data becomes magnified when the inverse Radon transform is applied. Among the methods used to deal with this problem is the wavelet-vaguelette decomposition (WVD) coupled with wavelet shrinkage, as introduced by Donoho (1995). We extend several results of Donoho and others here. First, we introduce a new sufficient condition on wavelets to generate a WVD. For a general homogeneous operator, whose class includes the Radon transform, we show that a variant of Donoho's method for solving inverse problems can be derived as the exact minimizer of a variational problem that uses a Besov norm as the smoothing functional. We give a new proof of the rate of convergence of wavelet shrinkage that allows us to estimate rather sharply the best shrinkage parameter needed to recover an image from noise-corrupted data. We conduct tomographic reconstruction computations that support the hypothesis that near-optimal shrinkage parameters can be derived if one can estimate only two Besov-space parameters about an image f. Both theoretical and experimental results indicate that our choice of shrinkage parameters yields uniformly better results than Kolaczyk's (1996) variant of Donoho's method and the classical filtered backprojection method.

67 citations


Cites methods from "Image Processing"

  • ...Methods based on one-dimensional wavelet decomposition of the projection data followed by linear filtered backprojection were introduced in [40], [38], [39], [45], and [47]; local reconstruction is a concern of all these authors....

    [...]

Journal ArticleDOI
TL;DR: Experimental results and security analysis show that the improved encryption algorithm can not only resist chosen plain image attacks but also maintain the merits of the original algorithm.

67 citations

References
More filters
Journal ArticleDOI
01 Nov 1973
TL;DR: These results indicate that the easily computable textural features based on gray-tone spatial dependancies probably have a general applicability for a wide variety of image-classification applications.
Abstract: Texture is one of the important characteristics used in identifying objects or regions of interest in an image, whether the image be a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily computable textural features based on gray-tone spatial dependancies, and illustrates their application in category-identification tasks of three different kinds of image data: photomicrographs of five kinds of sandstones, 1:20 000 panchromatic aerial photographs of eight land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery containing seven land-use categories. We use two kinds of decision rules: one for which the decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 percent for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

20,442 citations

Book
03 Oct 1988
TL;DR: This chapter discusses two Dimensional Systems and Mathematical Preliminaries and their applications in Image Analysis and Computer Vision, as well as image reconstruction from Projections and image enhancement.
Abstract: Introduction. 1. Two Dimensional Systems and Mathematical Preliminaries. 2. Image Perception. 3. Image Sampling and Quantization. 4. Image Transforms. 5. Image Representation by Stochastic Models. 6. Image Enhancement. 7. Image Filtering and Restoration. 8. Image Analysis and Computer Vision. 9. Image Reconstruction From Projections. 10. Image Data Compression.

8,504 citations

Journal ArticleDOI
TL;DR: The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods.
Abstract: Embedded zerotree wavelet (EZW) coding, introduced by Shapiro (see IEEE Trans. Signal Processing, vol.41, no.12, p.3445, 1993), is a very effective and computationally simple technique for image compression. We offer an alternative explanation of the principles of its operation, so that the reasons for its excellent performance can be better understood. These principles are partial ordering by magnitude with a set partitioning sorting algorithm, ordered bit plane transmission, and exploitation of self-similarity across different scales of an image wavelet transform. Moreover, we present a new and different implementation based on set partitioning in hierarchical trees (SPIHT), which provides even better performance than our previously reported extension of EZW that surpassed the performance of the original EZW. The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods. In addition, the new coding and decoding procedures are extremely fast, and they can be made even faster, with only small loss in performance, by omitting entropy coding of the bit stream by the arithmetic code.

5,890 citations

Journal ArticleDOI
TL;DR: Eight constructs decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent a cellular valves and intact chamber geometry that could generate pump function in a modified working heart preparation.
Abstract: About 3,000 individuals in the United States are awaiting a donor heart; worldwide, 22 million individuals are living with heart failure. A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Generating a bioartificial heart requires engineering of cardiac architecture, appropriate cellular constituents and pump function. We decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent acellular valves and intact chamber geometry. To mimic cardiac cell composition, we reseeded these constructs with cardiac or endothelial cells. To establish function, we maintained eight constructs for up to 28 d by coronary perfusion in a bioreactor that simulated cardiac physiology. By day 4, we observed macroscopic contractions. By day 8, under physiological load and electrical stimulation, constructs could generate pump function (equivalent to about 2% of adult or 25% of 16-week fetal heart function) in a modified working heart preparation.

2,454 citations

Journal ArticleDOI
01 Sep 1997
TL;DR: This paper examines automated iris recognition as a biometrically based technology for personal identification and verification from the observation that the human iris provides a particularly interesting structure on which to base a technology for noninvasive biometric assessment.
Abstract: This paper examines automated iris recognition as a biometrically based technology for personal identification and verification. The motivation for this endeavor stems from the observation that the human iris provides a particularly interesting structure on which to base a technology for noninvasive biometric assessment. In particular the biomedical literature suggests that irises are as distinct as fingerprints or patterns of retinal blood vessels. Further, since the iris is an overt body, its appearance is amenable to remote examination with the aid of a machine vision system. The body of this paper details issues in the design and operation of such systems. For the sake of illustration, extant systems are described in some amount of detail.

2,046 citations