scispace - formally typeset
Search or ask a question
Proceedings Article

Image Processing

01 Jan 1994-
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.
Citations
More filters
Journal ArticleDOI
TL;DR: Some aspects of how plants translate perception of a pathogen into a signal cascade leading to an innate immune response are reported, including that Arabidopsis thaliana CYCLIC NUCLEOTIDE GATED CHANNEL2 (CNGC2/DND1) conducts Ca2+ into cells and a model linking this Ca2+.
Abstract: Plant innate immune response to pathogen infection includes an elegant signaling pathway leading to reactive oxygen species generation and resulting hypersensitive response (HR); localized programmed cell death in tissue surrounding the initial infection site limits pathogen spread. A veritable symphony of cytosolic signaling molecules (including Ca2+, nitric oxide [NO], cyclic nucleotides, and calmodulin) have been suggested as early components of HR signaling. However, specific interactions among these cytosolic secondary messengers and their roles in the signal cascade are still unclear. Here, we report some aspects of how plants translate perception of a pathogen into a signal cascade leading to an innate immune response. We show that Arabidopsis thaliana CYCLIC NUCLEOTIDE GATED CHANNEL2 (CNGC2/DND1) conducts Ca2+ into cells and provide a model linking this Ca2+ current to downstream NO production. NO is a critical signaling molecule invoking plant innate immune response to pathogens. Plants without functional CNGC2 lack this cell membrane Ca2+ current and do not display HR; providing the mutant with NO complements this phenotype. The bacterial pathogen–associated molecular pattern elicitor lipopolysaccharide activates a CNGC Ca2+ current, which may be linked to NO generation due to buildup of cytosolic Ca2+/calmodulin.

363 citations

Journal ArticleDOI
TL;DR: The vision-aided inertial navigation algorithm (VISINAV) algorithm that enables precision planetary landing and validation results from a sounding-rocket test flight vastly improve current state of the art for terminal descent navigation without visual updates, and meet the requirements of future planetary exploration missions.
Abstract: In this paper, we present the vision-aided inertial navigation (VISINAV) algorithm that enables precision planetary landing. The vision front-end of the VISINAV system extracts 2-D-to-3-D correspondences between descent images and a surface map (mapped landmarks), as well as 2-D-to-2-D feature tracks through a sequence of descent images (opportunistic features). An extended Kalman filter (EKF) tightly integrates both types of visual feature observations with measurements from an inertial measurement unit. The filter computes accurate estimates of the lander's terrain-relative position, attitude, and velocity, in a resource-adaptive and hence real-time capable fashion. In addition to the technical analysis of the algorithm, the paper presents validation results from a sounding-rocket test flight, showing estimation errors of only 0.16 m/s for velocity and 6.4 m for position at touchdown. These results vastly improve current state of the art for terminal descent navigation without visual updates, and meet the requirements of future planetary exploration missions.

356 citations


Cites background from "Image Processing"

  • ...Thus, the step of convolving the template with the map can be very computationally demanding, unless convolution is carried out in the frequency domain [37]....

    [...]

Journal ArticleDOI
07 Nov 2002
TL;DR: This presentation reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing, and shows how a variety of methods and models relate to this framework including models for self-similar and 1/f processes.
Abstract: Reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coherent picture of this framework. A second goal is to describe how this topic fits into the even larger field of MR methods and concepts-in particular, making ties to topics such as wavelets and multigrid methods. A third goal is to provide several alternate viewpoints for this body of work, as the methods and concepts we describe intersect with a number of other fields. The principle focus of our presentation is the class of MR Markov processes defined on pyramidally organized trees. The attractiveness of these models stems from both the very efficient algorithms they admit and their expressive power and broad applicability. We show how a variety of methods and models relate to this framework including models for self-similar and 1/f processes. We also illustrate how these methods have been used in practice.

352 citations

Journal ArticleDOI
TL;DR: This paper proposes an effective color filter array (CFA) interpolation method for digital still cameras (DSCs) using a simple image model that correlates the R,G,B channels and shows that the frequency response of the proposed method is better than the conventional methods.
Abstract: We propose an effective color filter array (CFA) interpolation method for digital still cameras (DSCs) using a simple image model that correlates the R,G,B channels. In this model, we define the constants K/sub R/ as green minus red and K/sub B/ as green minus blue. For real-world images, the contrasts of K/sub R/ and K/sub B/ are quite flat over a small region and this property is suitable for interpolation. The main contribution of this paper is that we propose a low-complexity interpolation method to improve the image quality. We show that the frequency response of the proposed method is better than the conventional methods. Simulation results also verify that the proposed method obtain superior image quality on typical images. The luminance channel of the proposed method outperforms by 6.34-dB peak SNR the bilinear method, and the chrominance channels have a 7.69-dB peak signal-to-noise ratio improvement on average. Furthermore, the complexity of the proposed method is comparable to conventional bilinear interpolation. It requires only add and shift operations to implement.

347 citations


Cites methods from "Image Processing"

  • ...Since there is a high correlation between the , and channels [6], the interpolation method using color correlation is expected to obtain better performance....

    [...]

Journal ArticleDOI
TL;DR: It is shown that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis, which is identified as a gateway with an ABA-dependent guard, which prevents root growth into saline environments.
Abstract: The endodermal tissue layer is found in the roots of vascular plants and functions as a semipermeable barrier, regulating the transport of solutes from the soil into the vascular stream. As a gateway for solutes, the endodermis may also serve as an important site for sensing and responding to useful or toxic substances in the environment. Here, we show that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis. We report that salt stress induces an extended quiescent phase in postemergence lateral roots (LRs) whereby the rate of growth is suppressed for several days before recovery begins. Quiescence is correlated with sustained abscisic acid (ABA) response in LRs and is dependent upon genes necessary for ABA biosynthesis, signaling, and transcriptional regulation. We use a tissue-specific strategy to identify the key cell layers where ABA signaling acts to regulate growth. In the endodermis, misexpression of the ABA insensitive1-1 mutant protein, which dominantly inhibits ABA signaling, leads to a substantial recovery in LR growth under salt stress conditions. Gibberellic acid signaling, which antagonizes the ABA pathway, also acts primarily in the endodermis, and we define the crosstalk between these two hormones. Our results identify the endodermis as a gateway with an ABA-dependent guard, which prevents root growth into saline environments.

344 citations

References
More filters
Journal ArticleDOI
01 Nov 1973
TL;DR: These results indicate that the easily computable textural features based on gray-tone spatial dependancies probably have a general applicability for a wide variety of image-classification applications.
Abstract: Texture is one of the important characteristics used in identifying objects or regions of interest in an image, whether the image be a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily computable textural features based on gray-tone spatial dependancies, and illustrates their application in category-identification tasks of three different kinds of image data: photomicrographs of five kinds of sandstones, 1:20 000 panchromatic aerial photographs of eight land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery containing seven land-use categories. We use two kinds of decision rules: one for which the decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 percent for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

20,442 citations

Book
03 Oct 1988
TL;DR: This chapter discusses two Dimensional Systems and Mathematical Preliminaries and their applications in Image Analysis and Computer Vision, as well as image reconstruction from Projections and image enhancement.
Abstract: Introduction. 1. Two Dimensional Systems and Mathematical Preliminaries. 2. Image Perception. 3. Image Sampling and Quantization. 4. Image Transforms. 5. Image Representation by Stochastic Models. 6. Image Enhancement. 7. Image Filtering and Restoration. 8. Image Analysis and Computer Vision. 9. Image Reconstruction From Projections. 10. Image Data Compression.

8,504 citations

Journal ArticleDOI
TL;DR: The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods.
Abstract: Embedded zerotree wavelet (EZW) coding, introduced by Shapiro (see IEEE Trans. Signal Processing, vol.41, no.12, p.3445, 1993), is a very effective and computationally simple technique for image compression. We offer an alternative explanation of the principles of its operation, so that the reasons for its excellent performance can be better understood. These principles are partial ordering by magnitude with a set partitioning sorting algorithm, ordered bit plane transmission, and exploitation of self-similarity across different scales of an image wavelet transform. Moreover, we present a new and different implementation based on set partitioning in hierarchical trees (SPIHT), which provides even better performance than our previously reported extension of EZW that surpassed the performance of the original EZW. The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods. In addition, the new coding and decoding procedures are extremely fast, and they can be made even faster, with only small loss in performance, by omitting entropy coding of the bit stream by the arithmetic code.

5,890 citations

Journal ArticleDOI
TL;DR: Eight constructs decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent a cellular valves and intact chamber geometry that could generate pump function in a modified working heart preparation.
Abstract: About 3,000 individuals in the United States are awaiting a donor heart; worldwide, 22 million individuals are living with heart failure. A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Generating a bioartificial heart requires engineering of cardiac architecture, appropriate cellular constituents and pump function. We decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent acellular valves and intact chamber geometry. To mimic cardiac cell composition, we reseeded these constructs with cardiac or endothelial cells. To establish function, we maintained eight constructs for up to 28 d by coronary perfusion in a bioreactor that simulated cardiac physiology. By day 4, we observed macroscopic contractions. By day 8, under physiological load and electrical stimulation, constructs could generate pump function (equivalent to about 2% of adult or 25% of 16-week fetal heart function) in a modified working heart preparation.

2,454 citations

Journal ArticleDOI
01 Sep 1997
TL;DR: This paper examines automated iris recognition as a biometrically based technology for personal identification and verification from the observation that the human iris provides a particularly interesting structure on which to base a technology for noninvasive biometric assessment.
Abstract: This paper examines automated iris recognition as a biometrically based technology for personal identification and verification. The motivation for this endeavor stems from the observation that the human iris provides a particularly interesting structure on which to base a technology for noninvasive biometric assessment. In particular the biomedical literature suggests that irises are as distinct as fingerprints or patterns of retinal blood vessels. Further, since the iris is an overt body, its appearance is amenable to remote examination with the aid of a machine vision system. The body of this paper details issues in the design and operation of such systems. For the sake of illustration, extant systems are described in some amount of detail.

2,046 citations