scispace - formally typeset
Search or ask a question
Proceedings Article

Image Processing

01 Jan 1994-
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.
Citations
More filters
Book
03 Oct 1988
TL;DR: This chapter discusses two Dimensional Systems and Mathematical Preliminaries and their applications in Image Analysis and Computer Vision, as well as image reconstruction from Projections and image enhancement.
Abstract: Introduction. 1. Two Dimensional Systems and Mathematical Preliminaries. 2. Image Perception. 3. Image Sampling and Quantization. 4. Image Transforms. 5. Image Representation by Stochastic Models. 6. Image Enhancement. 7. Image Filtering and Restoration. 8. Image Analysis and Computer Vision. 9. Image Reconstruction From Projections. 10. Image Data Compression.

8,504 citations

Journal ArticleDOI
TL;DR: The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods.
Abstract: Embedded zerotree wavelet (EZW) coding, introduced by Shapiro (see IEEE Trans. Signal Processing, vol.41, no.12, p.3445, 1993), is a very effective and computationally simple technique for image compression. We offer an alternative explanation of the principles of its operation, so that the reasons for its excellent performance can be better understood. These principles are partial ordering by magnitude with a set partitioning sorting algorithm, ordered bit plane transmission, and exploitation of self-similarity across different scales of an image wavelet transform. Moreover, we present a new and different implementation based on set partitioning in hierarchical trees (SPIHT), which provides even better performance than our previously reported extension of EZW that surpassed the performance of the original EZW. The image coding results, calculated from actual file sizes and images reconstructed by the decoding algorithm, are either comparable to or surpass previous results obtained through much more sophisticated and computationally complex methods. In addition, the new coding and decoding procedures are extremely fast, and they can be made even faster, with only small loss in performance, by omitting entropy coding of the bit stream by the arithmetic code.

5,890 citations

Journal ArticleDOI
TL;DR: Eight constructs decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent a cellular valves and intact chamber geometry that could generate pump function in a modified working heart preparation.
Abstract: About 3,000 individuals in the United States are awaiting a donor heart; worldwide, 22 million individuals are living with heart failure. A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Generating a bioartificial heart requires engineering of cardiac architecture, appropriate cellular constituents and pump function. We decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent acellular valves and intact chamber geometry. To mimic cardiac cell composition, we reseeded these constructs with cardiac or endothelial cells. To establish function, we maintained eight constructs for up to 28 d by coronary perfusion in a bioreactor that simulated cardiac physiology. By day 4, we observed macroscopic contractions. By day 8, under physiological load and electrical stimulation, constructs could generate pump function (equivalent to about 2% of adult or 25% of 16-week fetal heart function) in a modified working heart preparation.

2,454 citations

Journal ArticleDOI
01 Sep 1997
TL;DR: This paper examines automated iris recognition as a biometrically based technology for personal identification and verification from the observation that the human iris provides a particularly interesting structure on which to base a technology for noninvasive biometric assessment.
Abstract: This paper examines automated iris recognition as a biometrically based technology for personal identification and verification. The motivation for this endeavor stems from the observation that the human iris provides a particularly interesting structure on which to base a technology for noninvasive biometric assessment. In particular the biomedical literature suggests that irises are as distinct as fingerprints or patterns of retinal blood vessels. Further, since the iris is an overt body, its appearance is amenable to remote examination with the aid of a machine vision system. The body of this paper details issues in the design and operation of such systems. For the sake of illustration, extant systems are described in some amount of detail.

2,046 citations


Cites methods from "Image Processing"

  • ...system makes us of an isotropic bandpass decomposition derived from application of Laplacian of Gaussian filters [25], [29] to the image data....

    [...]

  • ...In practice, the filtered image is realized as a Laplacian pyramid [8], [29]....

    [...]

Journal ArticleDOI
TL;DR: This paper identifies some promising techniques for image retrieval according to standard principles and examines implementation procedures for each technique and discusses its advantages and disadvantages.

1,910 citations


Cites background or methods from "Image Processing"

  • ...Structural description of chromosome shape (reprinted from [14])....

    [...]

  • ...Common invariants include (i) geometric invariants such as cross-ratio, length ratio, distance ratio, angle, area [69], triangle [70], invariants from coplanar points [14]; (ii) algebraic invariants such as determinant, eigenvalues [71], trace [14]; (iii) di<erential invariants such as curvature, torsion and Gaussian curvature....

    [...]

  • ...Designers of shape invariants argue that although most of other shape representation techniques are invariant under similarity transformations (rotation, translation and scaling), they depend on viewpoint [14]....

    [...]

  • ...The extracting of the convex hull can use both boundary tracing method [14] and morphological methods [11,15]....

    [...]

  • ...Assuming the shape boundary has been represented as a shape signature z(i), the rth moment mr and central moment r can be estimated as [14]...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: These cells possess a highly favourable base neuronal and dopaminergic prepotential, which may easily be accentuated by standard induction protocols.

18 citations

Posted ContentDOI
20 Jul 2019-bioRxiv
TL;DR: A new image analysis approach that provides fully-automatic extraction of complex root system architectures from a range of plant species in varied imaging setups, and the ability of the network to adapt to different plant species via transfer learning is demonstrated.
Abstract: We present a new image analysis approach that provides fully-automatic extraction of complex root system architectures from a range of plant species in varied imaging setups. Driven by modern deep-learning approaches, RootNav 2.0 replaces previously manual and semi-automatic feature extraction with an extremely deep multi-task Convolutional Neural Network architecture. The network has been designed to explicitly combine local pixel information with global scene information in order to accurately segment small root features across high-resolution images. In addition, the network simultaneously locates seeds, and first and second order root tips to drive a search algorithm seeking optimal paths throughout the image, extracting accurate architectures without user interaction. The proposed method is evaluated on images of wheat (Triticum aestivum L.) from a seedling assay. The results are compared with semi-automatic analysis via the original RootNav tool, demonstrating comparable accuracy, with a 10-fold increase in speed. We then demonstrate the ability of the network to adapt to different plant species via transfer learning, offering similar accuracy when transferred to an Arabidopsis thaliana plate assay. We transfer for a final time to images of Brassica napus from a hydroponic assay, and still demonstrate good accuracy despite many fewer training images. The tool outputs root architectures in the widely accepted RSML standard, for which numerous analysis packages exist (http://rootsystemml.github.io/), as well as segmentation masks compatible with other automated measurement tools.

18 citations

Proceedings ArticleDOI
28 Sep 2015
TL;DR: The intent of this paper is to provide a first critical review to some contrast enhancement evaluation measures and propose a new one and is considered as a first step towards the development of a unifying framework for image enhancement evaluation.
Abstract: Contrast enhancement is one of the most studied problems in image processing. A plethora of approaches has been proposed in the literature for image enhancement since the pioneer work of Kovasznay and Joseph in 1955 [1] and the famous contribution of Gabor in 1965 on image deblurring [2]. However, very few works have been dedicated to contrast enhancement evaluation. This is mainly due to the fact that image enhancement is primarily related to subjective aspects of human perceptual vision. The intent of this paper is to provide a first critical review to some contrast enhancement evaluation measures and propose a new one. An objective comparison of these measures on various color real images processed by some neighborhood based methods is provided. This work is considered as a first step towards the development of a unifying framework for image enhancement evaluation. This could be also used to control the side effect that may result from any image enhancement such as contrast enhancement, denoising, tone mapping and other similar image processing tools.

18 citations

Book ChapterDOI
TL;DR: This work provides a methodological framework for probing PKR function by use of assays for phosphorylation, RNA-protein stability, PKR dimerization, and in vitro translation and complemented by nuclear magnetic resonance approaches for probing structural features of PKR activation.
Abstract: Protein kinase RNA-activated (PKR) is a serine/threonine kinase that contains an N-terminal RNA-binding domain (dsRNA) and a C-terminal kinase domain. On binding viral dsRNA molecules, PKR can become activated and phosphorylate cellular targets, such as eukaryotic translation initiation factor 2α (eIF-2α). Phosphorylation of eIF-2α results in attenuation of protein translation initiation. Therefore, PKR plays an integral role in the antiviral response to cellular infection. Here we provide a methodological framework for probing PKR function by use of assays for phosphorylation, RNA–protein stability, PKR dimerization, and in vitro translation. These methods are complemented by nuclear magnetic resonance approaches for probing structural features of PKR activation. Considerations required for both PKR and dsRNA sample preparation are also discussed.

18 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared changes in the ontogenetic development of muscles associated with digging in the Quenda (Isoodon fusciventer), and measured muscle mass (m m ), pennation angle, and fiber length (FL) to calculate physiological cross-sectional area (PCSA) as well as estimate the maximum isometric force (Fmax).
Abstract: Many mammals dig, either during foraging to access subsurface food resources, or in creating burrows for shelter. Digging requires large forces produced by muscles and transmitted to the soil via the skeletal system; thus fossorial mammals tend to have characteristic modifications of the musculoskeletal system that reflect their digging ability. Bandicoots (Marsupialia: Peramelidae) scratch-dig mainly to source food, searching for subterranean food items including invertebrates, seeds, and fungi. They have musculoskeletal features for digging, including shortened, robust forelimb bones, large muscles, and enlarged muscle attachment areas. Here, we compared changes in the ontogenetic development of muscles associated with digging in the Quenda (Isoodon fusciventer). We measured muscle mass (m m ), pennation angle, and fiber length (FL) to calculate physiological cross-sectional area (PCSA; a proxy of maximum isometric force) as well as estimate the maximum isometric force (Fmax) for 34 individuals ranging in body size from 124 to 2,390 g. Males grow larger than females in this bandicoot species, however, we found negligible sex differences in mass-specific m m , PCSA or FL for our sample. Majority of the forelimb muscles PCSA showed a positive allometric relationship with total body mass, while m m and FL in the majority of forelimb muscles showed isometry. Mechanical similarity was tested, and two thirds of forelimb muscles maximum isometric forces (Fmax) scaled with isometry; therefore the forelimb is primarily mechanical similar throughout ontogeny. PCSA showed a significant difference between scaling slopes between main movers in the power stroke, and main movers of the recovery stroke of scratch-digging. This suggests that some forelimb muscles grow with positive allometry, specially these associated with the power stroke of digging. Intraspecific variation in PCSA is rarely considered in the literature, and thus this is an important study quantifying changes in muscle architectural properties with growth in a mammalian model of scratch-digging.

18 citations