scispace - formally typeset
Journal ArticleDOI

Image Segmentation and Retrievals based on Finite Doubly Truncated Bivariate Gaussian Mixture Model and KMeans

31 Jul 2011-International Journal of Computer Applications (Foundation of Computer Science (FCS))-Vol. 25, Iss: 4, pp 5-13

...read more

Content maybe subject to copyright    Report


Citations
More filters
Journal ArticleDOI

[...]

TL;DR: The application of multivariate generalized Gaussian mixture probability model for segmenting the texture of an image integrating with hierarchical clustering, developed using component maximum likelihood under Bayesian frame is addressed.
Abstract: Texture deals with the visual properties of an image. Texture analysis plays a dominant role for image segmentation. In texture segmentation, model based methods are superior to model free methods with respect to segmentation methods. This paper addresses the application of multivariate generalized Gaussian mixture probability model for segmenting the texture of an image integrating with hierarchical clustering. Here the feature vector associated with the texture is derived through DCT coefficients of the image blocks. The model parameters are estimated using EM algorithm. The initialization of model parameters is done through hierarchical clustering algorithm and moment method of estimation. The texture segmentation algorithm is developed using component maximum likelihood under Bayesian frame. The performance of the proposed algorithm is carried through experimentation on five image textures selected randomly from the Brodatz texture database. The texture segmentation performance measures such as GCE, PRI and VOI have revealed that this method outperform over the existing methods of texture segmentation using Gaussian mixture model. This is also supported by computing confusion matrix, accuracy, specificity, sensitivity and F-measure.

5 citations


Cites background from "Image Segmentation and Retrievals b..."

  • [...]

[...]

01 Jan 2012
TL;DR: In this paper, a novel and new skin color segmentation algorithm is proposed based on bivariate Pearson type II a for human computer interaction, which is one of the most important segmentation algorithms.
Abstract: Probability distributions formulate the basic framework for developing several segmentation algorithms. Among the various segmentation algorithms, skin colour segmentation is one of the most important algorithms for human computer interaction. Due to various random factors influencing the colour space, there does not exist a unique algorithm which serve the purpose of all images. In this paper a novel and new skin colour segmentation algorithms is proposed based on bivariate Pearson type II a

5 citations

[...]

01 Jan 2014
TL;DR: The survey of the skin pixel segmentation using the learning algorithms is presented and it is shown that skin classifier identifies the boundary of theskin image in a skin color model based on the training dataset.
Abstract: Skin segmentation is the process of the identifying the skin pixels in a image in a particular color model and dividing the images into skin and non-skin pixels. It is the process of find the particular skin of the image or video in a color model. Finding the regions of the images in human images to say these pixel regions are part of the image or videos is typically a preprocessing step in skin detection in computer vision, face detection or multiview face detection. Skin pixel detection model converts the images into appropriate format in a color space and then classification process is being used for labeling of the skin and non-skin pixels. A skin classifier identifies the boundary of the skin image in a skin color model based on the training dataset. Here in this paper, we present the survey of the skin pixel segmentation using the learning algorithms.

3 citations


Cites background from "Image Segmentation and Retrievals b..."

  • [...]

Journal Article

[...]

TL;DR: The skin colour is modeled by a finite bivariate Pearsonian type-IVa mixture distribution under HSI colour space of the image and the proposed segmentation algorithm performs better with respect to the segmentation quality metrics like PRI, GCE and VOI.
Abstract: The human computer interaction with respect to skin colour is an important area of research due to its ready applications in several areas like face recognition, surveillance, image retrievals, identification, gesture analysis, human tracking etc. For efficient skin colour segmentation statistical modeling is a prime desiderata. In general skin colour segment is done based on Gaussian mixture model. Due to the limitations on GMM like symmetric and mesokurtic nature the accuracy of the skin colour segmentation is affected. To improve the accuracy of the skin colour segmentation system, In this paper the skin colour is modeled by a finite bivariate Pearsonian type-IVa mixture distribution under HSI colour space of the image. The model parameters are estimated by EM algorithm. Using the Bayesian frame the segmentation algorithm is proposed. Through experimentation it is observed that the proposed skin colour segmentation algorithm perform better with respect to the segmentation quality metrics like PRI, GCE and VOI. The ROC curves plotted for the system also revealed that the developed algorithm segment pixels in the image more efficiently. Keywords : Skin colour segmentation, HSI colour space, Bivariate Pearson type IVa mixture model, Image segmentation metrics.

2 citations

Journal ArticleDOI

[...]

12 Apr 2019

References
More filters
Book

[...]

01 Jan 1994
TL;DR: Continuous Distributions (General) Normal Distributions Lognormal Distributions Inverse Gaussian (Wald) Distributions Cauchy Distribution Gamma Distributions Chi-Square Distributions Including Chi and Rayleigh Exponential Distributions Pareto Distributions Weibull Distributions Abbreviations Indexes
Abstract: Continuous Distributions (General) Normal Distributions Lognormal Distributions Inverse Gaussian (Wald) Distributions Cauchy Distribution Gamma Distributions Chi-Square Distributions Including Chi and Rayleigh Exponential Distributions Pareto Distributions Weibull Distributions Abbreviations Indexes

7,269 citations

Proceedings ArticleDOI

[...]

07 Jul 2001
TL;DR: In this paper, the authors present a database containing ground truth segmentations produced by humans for images of a wide variety of natural scenes, and define an error measure which quantifies the consistency between segmentations of differing granularities.
Abstract: This paper presents a database containing 'ground truth' segmentations produced by humans for images of a wide variety of natural scenes. We define an error measure which quantifies the consistency between segmentations of differing granularities and find that different human segmentations of the same image are highly consistent. Use of this dataset is demonstrated in two applications: (1) evaluating the performance of segmentation algorithms and (2) measuring probability distributions associated with Gestalt grouping factors as well as statistics of image region properties.

6,077 citations

Book

[...]

15 Nov 1996
TL;DR: The EM Algorithm and Extensions describes the formulation of the EM algorithm, details its methodology, discusses its implementation, and illustrates applications in many statistical contexts, opening the door to the tremendous potential of this remarkably versatile statistical tool.
Abstract: The first unified account of the theory, methodology, and applications of the EM algorithm and its extensionsSince its inception in 1977, the Expectation-Maximization (EM) algorithm has been the subject of intense scrutiny, dozens of applications, numerous extensions, and thousands of publications. The algorithm and its extensions are now standard tools applied to incomplete data problems in virtually every field in which statistical methods are used. Until now, however, no single source offered a complete and unified treatment of the subject.The EM Algorithm and Extensions describes the formulation of the EM algorithm, details its methodology, discusses its implementation, and illustrates applications in many statistical contexts. Employing numerous examples, Geoffrey McLachlan and Thriyambakam Krishnan examine applications both in evidently incomplete data situations-where data are missing, distributions are truncated, or observations are censored or grouped-and in a broad variety of situations in which incompleteness is neither natural nor evident. They point out the algorithm's shortcomings and explain how these are addressed in the various extensions.Areas of application discussed include: Regression Medical imaging Categorical data analysis Finite mixture analysis Factor analysis Robust statistical modeling Variance-components estimation Survival analysis Repeated-measures designs For theoreticians, practitioners, and graduate students in statistics as well as researchers in the social and physical sciences, The EM Algorithm and Extensions opens the door to the tremendous potential of this remarkably versatile statistical tool.

5,867 citations

Journal ArticleDOI

[...]

TL;DR: Attempts have been made to cover both fuzzy and non-fuzzy techniques including color image segmentation and neural network based approaches, which addresses the issue of quantitative evaluation of segmentation results.
Abstract: Many image segmentation techniques are available in the literature. Some of these techniques use only the gray level histogram, some use spatial details while others use fuzzy set theoretic approaches. Most of these techniques are not suitable for noisy environments. Some works have been done using the Markov Random Field (MRF) model which is robust to noise, but is computationally involved. Neural network architectures which help to get the output in real time because of their parallel processing ability, have also been used for segmentation and they work fine even when the noise level is very high. The literature on color image segmentation is not that rich as it is for gray tone images. This paper critically reviews and summarizes some of these techniques. Attempts have been made to cover both fuzzy and non-fuzzy techniques including color image segmentation and neural network based approaches. Adequate attention is paid to segmentation of range images and magnetic resonance images. It also addresses the issue of quantitative evaluation of segmentation results.

3,386 citations

Journal ArticleDOI

[...]

TL;DR: This survey provides a summary of color image segmentation techniques available now based on monochrome segmentation approaches operating in different color spaces and some novel approaches such as fuzzy method and physics-based method are investigated.
Abstract: Image segmentation is very essential and critical to image processing and pattern recognition. This survey provides a summary of color image segmentation techniques available now. Basically, color segmentation approaches are based on monochrome segmentation approaches operating in different color spaces. Therefore, we first discuss the major segmentation approaches for segmenting monochrome images: histogram thresholding, characteristic feature clustering, edge detection, region-based methods, fuzzy techniques, neural networks, etc.; then review some major color representation methods and their advantages/disadvantages; finally summarize the color image segmentation techniques using different color representations. The usage of color models for image segmentation is also discussed. Some novel approaches such as fuzzy method and physics-based method are investigated as well.

1,568 citations


"Image Segmentation and Retrievals b..." refers background in this paper

  • [...]

  • [...]

  • [...]



Trending Questions (1)
How to Train an image segmentation model?

The experimental results show that this method outperforms the existing model based image segmentation methods.