scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Image super-resolution

Linwei Yue1, Huanfeng Shen1, Jie Li1, Qiangqiang Yuan1, Hongyan Zhang1, Liangpei Zhang1 
01 Nov 2016-Signal Processing (Elsevier)-Vol. 128, pp 389-408
TL;DR: This paper aims to provide a review of SR from the perspective of techniques and applications, and especially the main contributions in recent years, and discusses the current obstacles for future research.
About: This article is published in Signal Processing.The article was published on 2016-11-01. It has received 378 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis, and provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

991 citations

Journal ArticleDOI
TL;DR: This paper indicates how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction, and provides a starting point for people interested in experimenting and contributing to the field of deep learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of deep learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

590 citations


Cites background from "Image super-resolution"

  • ...Image super-resolution, reconstructing a higher-resolution image or image sequence from the observed low-resolution image [190], is an exciting application of deep learning methods....

    [...]

Journal ArticleDOI
TL;DR: In this article, a test-time augmentation-based aleatoric uncertainty was proposed to analyze the effect of different transformations of the input image on the segmentation output, and the results showed that the proposed test augmentation provides a better uncertainty estimation than calculating the testtime dropout-based model uncertainty alone and helps to reduce overconfident incorrect predictions.

305 citations

Journal ArticleDOI
TL;DR: The proposed integrated fusion framework can achieve the integrated fusion of multisource observations to obtain high spatio-temporal-spectral resolution images, without limitations on the number of remote sensing sensors.
Abstract: Remote sensing satellite sensors feature a tradeoff between the spatial, temporal, and spectral resolutions. In this paper, we propose an integrated framework for the spatio–temporal–spectral fusion of remote sensing images. There are two main advantages of the proposed integrated fusion framework: it can accomplish different kinds of fusion tasks, such as multiview spatial fusion, spatio–spectral fusion, and spatio–temporal fusion, based on a single unified model, and it can achieve the integrated fusion of multisource observations to obtain high spatio–temporal–spectral resolution images, without limitations on the number of remote sensing sensors. The proposed integrated fusion framework was comprehensively tested and verified in a variety of image fusion experiments. In the experiments, a number of different remote sensing satellites were utilized, including IKONOS, the Enhanced Thematic Mapper Plus (ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Hyperspectral Digital Imagery Collection Experiment (HYDICE), and Systeme Pour l' Observation de la Terre-5 (SPOT-5). The experimental results confirm the effectiveness of the proposed method.

240 citations

Journal ArticleDOI
TL;DR: This letter proposes a new single-image super-resolution algorithm named local–global combined networks (LGCNet) for remote sensing images based on the deep CNNs, elaborately designed with its “multifork” structure to learn multilevel representations ofRemote sensing images including both local details and global environmental priors.
Abstract: Super-resolution is an image processing technology that recovers a high-resolution image from a single or sequential low-resolution images Recently deep convolutional neural networks (CNNs) have made a huge breakthrough in many tasks including super-resolution In this letter, we propose a new single-image super-resolution algorithm named local–global combined networks (LGCNet) for remote sensing images based on the deep CNNs Our LGCNet is elaborately designed with its “multifork” structure to learn multilevel representations of remote sensing images including both local details and global environmental priors Experimental results on a public remote sensing data set (UC Merced) demonstrate an overall improvement of both accuracy and visual performance over several state-of-the-art algorithms

203 citations


Cites background from "Image super-resolution"

  • ...Instead of devoting to physical imaging technology, many researchers aim to recover highresolution images from low-resolution ones using an image processing technology called super-resolution [1]....

    [...]

References
More filters
Journal ArticleDOI
Hongyan Zhang1, Wei He1, Liangpei Zhang1, Huanfeng Shen1, Qiangqiang Yuan1 
TL;DR: A new HSI restoration method based on low-rank matrix recovery (LRMR), which can simultaneously remove the Gaussian noise, impulse noise, dead lines, and stripes, is introduced.
Abstract: Hyperspectral images (HSIs) are often degraded by a mixture of various kinds of noise in the acquisition process, which can include Gaussian noise, impulse noise, dead lines, stripes, and so on. This paper introduces a new HSI restoration method based on low-rank matrix recovery (LRMR), which can simultaneously remove the Gaussian noise, impulse noise, dead lines, and stripes. By lexicographically ordering a patch of the HSI into a 2-D matrix, the low-rank property of the hyperspectral imagery is explored, which suggests that a clean HSI patch can be regarded as a low-rank matrix. We then formulate the HSI restoration problem into an LRMR framework. To further remove the mixed noise, the “Go Decomposition” algorithm is applied to solve the LRMR problem. Several experiments were conducted in both simulated and real data conditions to verify the performance of the proposed LRMR-based HSI restoration method.

720 citations

Journal ArticleDOI
TL;DR: It is shown that readily obtained prior knowledge can be used to obtain good-quality imagery with reduced data and the effect of noise on the reconstruction process is considered.
Abstract: We consider the problem of reconstructing remotely obtained images from image-plane detector arrays. Although the individual detectors may be larger than the blur spot of the imaging optics, high-resolution reconstructions can be obtained by scanning or rotating the image with respect to the detector. As an alternative to matrix inversion or least-squares estimation [Appl. Opt. 26, 3615 (1987)], the method of convex projections is proposed. We show that readily obtained prior knowledge can be used to obtain good-quality imagery with reduced data. The effect of noise on the reconstruction process is considered.

719 citations

Journal ArticleDOI
TL;DR: The proposed general algorithm framework for inverse problem regularization with a single forward-backward operator step, namely, Bregmanized operator splitting (BOS), converges without fully solving the subproblems, and numerical results on deconvolution and compressive sensing illustrate the performance of nonlocal total variation regularization under the proposed algorithm framework.
Abstract: Bregman methods introduced in [S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, Multiscale Model. Simul., 4 (2005), pp. 460-489] to image processing are demonstrated to be an efficient optimization method for solving sparse reconstruction with convex functionals, such as the $\ell^1$ norm and total variation [W. Yin, S. Osher, D. Goldfarb, and J. Darbon, SIAM J. Imaging Sci., 1 (2008), pp. 143-168; T. Goldstein and S. Osher, SIAM J. Imaging Sci., 2 (2009), pp. 323-343]. In particular, the efficiency of this method relies on the performance of inner solvers for the resulting subproblems. In this paper, we propose a general algorithm framework for inverse problem regularization with a single forward-backward operator splitting step [P. L. Combettes and V. R. Wajs, Multiscale Model. Simul., 4 (2005), pp. 1168-1200], which is used to solve the subproblems of the Bregman iteration. We prove that the proposed algorithm, namely, Bregmanized operator splitting (BOS), converges without fully solving the subproblems. Furthermore, we apply the BOS algorithm and a preconditioned one for solving inverse problems with nonlocal functionals. Our numerical results on deconvolution and compressive sensing illustrate the performance of nonlocal total variation regularization under the proposed algorithm framework, compared to other regularization techniques such as the standard total variation method and the wavelet-based regularization method.

718 citations

Proceedings Article
26 Mar 2000
TL;DR: This work proposes an algorithm to learn a prior on the spatial distribution of the image gradient for frontal images of faces and shows how such a prior can be incorporated into a resolution enhancement algorithm to yield 4- to 8-fold improvements in resolution.
Abstract: Faces often appear very small in surveillance imagery because of the wide fields of view that are typically used and the relatively large distance between the cameras and the scene. For tasks such as face recognition, resolution enhancement techniques are therefore generally needed. Although numerous resolution enhancement algorithms have been proposed in the literature, most of them are limited by the fact that they make weak, if any, assumptions about the scene. We propose an algorithm to learn a prior on the spatial distribution of the image gradient for frontal images of faces. We proceed to show how such a prior can be incorporated into a resolution enhancement algorithm to yield 4- to 8-fold improvements in resolution (i.e., 16 to 64 times as many pixels). The additional pixels are, in effect, hallucinated.

634 citations


"Image super-resolution" refers background in this paper

  • ...role in some specific domains such as face hallucination [173,174],...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the effect of TV regularization on individual image features is investigated, and it is shown that the effect on individual features is inversely proportional to the scale of each feature.
Abstract: We give and prove two new and fundamental properties of total-variation-minimizing function regularization (TV regularization): edge locations of function features tend to be preserved, and under certain conditions are preserved exactly; intensity change experienced by individual features is inversely proportional to the scale of each feature. We give and prove exact analytic solutions to the TV regularization problem for simple but important cases. These can also be used to better understand the effects of TV regularization for more general cases. Our results explain why and how TV-minimizing image restoration can remove noise while leaving relatively intact larger-scaled image features, and thus why TV image restoration is especially effective in restoring images with larger-scaled features. Although TV regularization is a global problem, our results show that the effects of TV regularization on individual image features are often quite local. Our results give us a better understanding of what types of images and what types of image degradation are most effectively improved by TV-minimizing image restoration schemes, and they potentially lead to more intelligently designed TV-minimizing restoration schemes.

609 citations