scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Image super-resolution

Linwei Yue1, Huanfeng Shen1, Jie Li1, Qiangqiang Yuan1, Hongyan Zhang1, Liangpei Zhang1 
01 Nov 2016-Signal Processing (Elsevier)-Vol. 128, pp 389-408
TL;DR: This paper aims to provide a review of SR from the perspective of techniques and applications, and especially the main contributions in recent years, and discusses the current obstacles for future research.
About: This article is published in Signal Processing.The article was published on 2016-11-01. It has received 378 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis, and provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

991 citations

Journal ArticleDOI
TL;DR: This paper indicates how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction, and provides a starting point for people interested in experimenting and contributing to the field of deep learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of deep learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

590 citations


Cites background from "Image super-resolution"

  • ...Image super-resolution, reconstructing a higher-resolution image or image sequence from the observed low-resolution image [190], is an exciting application of deep learning methods....

    [...]

Journal ArticleDOI
TL;DR: In this article, a test-time augmentation-based aleatoric uncertainty was proposed to analyze the effect of different transformations of the input image on the segmentation output, and the results showed that the proposed test augmentation provides a better uncertainty estimation than calculating the testtime dropout-based model uncertainty alone and helps to reduce overconfident incorrect predictions.

305 citations

Journal ArticleDOI
TL;DR: The proposed integrated fusion framework can achieve the integrated fusion of multisource observations to obtain high spatio-temporal-spectral resolution images, without limitations on the number of remote sensing sensors.
Abstract: Remote sensing satellite sensors feature a tradeoff between the spatial, temporal, and spectral resolutions. In this paper, we propose an integrated framework for the spatio–temporal–spectral fusion of remote sensing images. There are two main advantages of the proposed integrated fusion framework: it can accomplish different kinds of fusion tasks, such as multiview spatial fusion, spatio–spectral fusion, and spatio–temporal fusion, based on a single unified model, and it can achieve the integrated fusion of multisource observations to obtain high spatio–temporal–spectral resolution images, without limitations on the number of remote sensing sensors. The proposed integrated fusion framework was comprehensively tested and verified in a variety of image fusion experiments. In the experiments, a number of different remote sensing satellites were utilized, including IKONOS, the Enhanced Thematic Mapper Plus (ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Hyperspectral Digital Imagery Collection Experiment (HYDICE), and Systeme Pour l' Observation de la Terre-5 (SPOT-5). The experimental results confirm the effectiveness of the proposed method.

240 citations

Journal ArticleDOI
TL;DR: This letter proposes a new single-image super-resolution algorithm named local–global combined networks (LGCNet) for remote sensing images based on the deep CNNs, elaborately designed with its “multifork” structure to learn multilevel representations ofRemote sensing images including both local details and global environmental priors.
Abstract: Super-resolution is an image processing technology that recovers a high-resolution image from a single or sequential low-resolution images Recently deep convolutional neural networks (CNNs) have made a huge breakthrough in many tasks including super-resolution In this letter, we propose a new single-image super-resolution algorithm named local–global combined networks (LGCNet) for remote sensing images based on the deep CNNs Our LGCNet is elaborately designed with its “multifork” structure to learn multilevel representations of remote sensing images including both local details and global environmental priors Experimental results on a public remote sensing data set (UC Merced) demonstrate an overall improvement of both accuracy and visual performance over several state-of-the-art algorithms

203 citations


Cites background from "Image super-resolution"

  • ...Instead of devoting to physical imaging technology, many researchers aim to recover highresolution images from low-resolution ones using an image processing technology called super-resolution [1]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Novel variational relaxations of Bayesian integration are described, characterized as well as posterior maximization, which can be solved robustly for very large models by algorithms unifying convex reconstruction and Bayesian graphical model technology.
Abstract: Milestones in sparse signal reconstruction and compressive sensing can be understood in a probabilistic Bayesian context, fusing underdetermined measurements with knowledge about low-level signal properties in the posterior distribution, which is maximized for point estimation. We review recent progress to advance beyond this setting. If the posterior is used as a distribution to be integrated over instead of merely an optimization criterion, sparse estimators with better properties may be obtained, and applications beyond point reconstruction from fixed data can be served. We describe novel variational relaxations of Bayesian integration, characterized as well as posterior maximization, which can be solved robustly for very large models by algorithms unifying convex reconstruction and Bayesian graphical model technology. They excel in difficult real-world imaging problems where posterior maximization performance is often unsatisfactory.

66 citations


"Image super-resolution" refers methods in this paper

  • ...Differing from the MAP estimator, the Bayesian methods calculate the posterior distribution instead of setting specific values of the parameters for the SR system [72,127]....

    [...]

Journal ArticleDOI
TL;DR: The proposed region-based spatial information adaptive total variation model can better avoid the effect of noise on the spatial information extraction, and maintains robustness with changes in the noise intensity in the super-resolution process.
Abstract: Total variation is used as a popular and effective image prior model in the regularization-based image processing fields. However, as the total variation model favors a piecewise constant solution, the processing result under high noise intensity in the flat regions of the image is often poor, and some pseudoedges are produced. In this paper, we develop a regional spatially adaptive total variation model. Initially, the spatial information is extracted based on each pixel, and then two filtering processes are added to suppress the effect of pseudoedges. In addition, the spatial information weight is constructed and classified with k-means clustering, and the regularization strength in each region is controlled by the clustering center value. The experimental results, on both simulated and real datasets, show that the proposed approach can effectively reduce the pseudoedges of the total variation regularization in the flat regions, and maintain the partial smoothness of the high-resolution image. More importantly, compared with the traditional pixel-based spatial information adaptive approach, the proposed region-based spatial information adaptive total variation model can better avoid the effect of noise on the spatial information extraction, and maintains robustness with changes in the noise intensity in the super-resolution process.

66 citations

Journal ArticleDOI
Huanfeng Shen1, Li Peng1, Linwei Yue1, Qiangqiang Yuan1, Liangpei Zhang1 
TL;DR: A method to adaptively determine the optimal norms for both fidelity term and regularization term in the (SR) restoration model is proposed, Inspired by a generalized likelihood ratio test, to solve the norm of the fidelity term.
Abstract: In the commonly employed regularization models of image restoration and super-resolution (SR), the norm determination is often challenging. This paper proposes a method to adaptively determine the optimal norms for both fidelity term and regularization term in the (SR) restoration model. Inspired by a generalized likelihood ratio test, a piecewise function is proposed to solve the norm of the fidelity term. This function can find the stable norm value in a certain number of iterations, regardless of whether the noise type is Gaussian, impulse, or mixed. For the regularization norm, the main advantage of the proposed method is that it is locally adaptive. Specifically, it assigns different norms for different pixel locations, according to the local activity measured by a structure tensor metric. The proposed method was tested using different types of images. The experimental results and error analyses verify the efficacy of the method.

61 citations

Journal ArticleDOI
TL;DR: A locally adaptive regularized super-resolution model for images with mixed noise and outliers adaptively assigns the local norms in the data fidelity term of the regularized model according to the impulse noise and motion outlier detection results.

61 citations

Journal ArticleDOI
TL;DR: This paper model the super-resolution image as a Markov random field (MRF) and a maximum a posteriori (MAP) estimation method is used to derive a cost function which is then optimized to recover the high-resolution field.

60 citations