scispace - formally typeset

Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

20 Jun 2009-pp 248-255

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.
Topics: WordNet (57%), Image retrieval (54%)
Citations
More filters

Proceedings Article
03 Dec 2012-
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,871 citations


Proceedings Article
Karen Simonyan1, Andrew Zisserman1Institutions (1)
01 Jan 2015-
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,857 citations


Proceedings Article
Karen Simonyan1, Andrew Zisserman1Institutions (1)
04 Sep 2014-
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

38,283 citations


Proceedings ArticleDOI
Christian Szegedy1, Wei Liu2, Yangqing Jia1, Pierre Sermanet1  +5 moreInstitutions (3)
07 Jun 2015-
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

29,453 citations


Book
18 Nov 2016-
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

26,972 citations


References
More filters

Journal ArticleDOI
David G. Lowe1Institutions (1)
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

42,225 citations


"ImageNet: A large-scale hierarchica..." refers methods in this paper

  • ...SIFT [15] descriptors are used in this experiment....

    [...]


Journal ArticleDOI
01 Sep 2000-Language
TL;DR: The lexical database: nouns in WordNet, Katherine J. Miller a semantic network of English verbs, and applications of WordNet: building semantic concordances are presented.
Abstract: Part 1 The lexical database: nouns in WordNet, George A. Miller modifiers in WordNet, Katherine J. Miller a semantic network of English verbs, Christiane Fellbaum design and implementation of the WordNet lexical database and searching software, Randee I. Tengi. Part 2: automated discovery of WordNet relations, Marti A. Hearst representing verb alterations in WordNet, Karen T. Kohl et al the formalization of WordNet by methods of relational concept analysis, Uta E. Priss. Part 3 Applications of WordNet: building semantic concordances, Shari Landes et al performance and confidence in a semantic annotation task, Christiane Fellbaum et al WordNet and class-based probabilities, Philip Resnik combining local context and WordNet similarity for word sense identification, Claudia Leacock and Martin Chodorow using WordNet for text retrieval, Ellen M. Voorhees lexical chains as representations of context for the detection and correction of malapropisms, Graeme Hirst and David St-Onge temporal indexing through lexical chaining, Reem Al-Halimi and Rick Kazman COLOR-X - using knowledge from WordNet for conceptual modelling, J.F.M. Burg and R.P. van de Riet knowledge processing on an extended WordNet, Sanda M. Harabagiu and Dan I Moldovan appendix - obtaining and using WordNet.

12,607 citations


"ImageNet: A large-scale hierarchica..." refers background or methods in this paper

  • ...ImageNet uses the hierarchical structure of WordNet [9]....

    [...]

  • ...The main asset of WordNet [9] lies in its semantic structure, i....

    [...]


01 Oct 2008-
TL;DR: The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life, and exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background.
Abstract: Most face databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as position, pose, lighting, background, camera quality, and gender. While there are many applications for face recognition technology in which one can control the parameters of image acquisition, there are also many applications in which the practitioner has little or no control over such parameters. This database, Labeled Faces in the Wild, is provided as an aid in studying the latter, unconstrained, recognition problem. The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life. The database exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background. In addition to describing the details of the database, we provide specific experimental paradigms for which the database is suitable. This is done in an effort to make research performed with the database as consistent and comparable as possible. We provide baseline results, including results of a state of the art face recognition system combined with a face alignment system. To facilitate experimentation on the database, we provide several parallel databases, including an aligned version.

5,107 citations


"ImageNet: A large-scale hierarchica..." refers methods in this paper

  • ...Special purpose datasets, such as FERET faces [19], Labeled faces in the Wild [13] and the Mammal Benchmark by Fink and Ullman [11] are not included....

    [...]


Eleanor Rosch1Institutions (1)
01 Jan 1978-
TL;DR: On those remote pages it is written that animals are divided into those that belong to the Emperor, and those that are trained, suckling pigs and stray dogs.
Abstract: On those remote pages itis written that animals are divided into (a) those that belong tothe Emperor, (b)embalmed ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray dogs, (h) those that are included in this classification, (i) those that tremble as if they were mad, (j) innumerable ones, (k) those drawn with a very fine camel’s hair brush, (1) others, (m) those that have just broken a flower vase, (n) those that resemble f ies from

4,296 citations


"ImageNet: A large-scale hierarchica..." refers background in this paper

  • ...Rosch and Lloyd [ 20 ] have demonstrated that humans tend to label visual objects at an easily accessible semantic level termed as “basic level” (e.g....

    [...]


Proceedings ArticleDOI
David Nister1, Henrik Stewenius1Institutions (1)
17 Jun 2006-
TL;DR: A recognition scheme that scales efficiently to a large number of objects and allows a larger and more discriminatory vocabulary to be used efficiently is presented, which it is shown experimentally leads to a dramatic improvement in retrieval quality.
Abstract: A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CD-covers from a database of 40000 images of popular music CD’s. The scheme builds upon popular techniques of indexing descriptors extracted from local regions, and is robust to background clutter and occlusion. The local region descriptors are hierarchically quantized in a vocabulary tree. The vocabulary tree allows a larger and more discriminatory vocabulary to be used efficiently, which we show experimentally leads to a dramatic improvement in retrieval quality. The most significant property of the scheme is that the tree directly defines the quantization. The quantization and the indexing are therefore fully integrated, essentially being one and the same. The recognition quality is evaluated through retrieval on a database with ground truth, showing the power of the vocabulary tree approach, going as high as 1 million images.

3,908 citations


Additional excerpts

  • ...[16, 17, 28, 18])....

    [...]


Network Information
Related Papers (5)
27 Jun 2016

Kaiming He, Xiangyu Zhang +2 more

03 Dec 2012

Alex Krizhevsky, Ilya Sutskever +1 more

04 Sep 2014

Karen Simonyan, Andrew Zisserman

07 Jun 2015

Christian Szegedy, Wei Liu +7 more

01 Jan 2015

Diederik P. Kingma, Jimmy Ba

Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
2022117
20218,229
20208,128
20195,736
20183,553
20172,122