scispace - formally typeset
Open AccessProceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

Reads0
Chats0
TLDR
The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Deep Bayesian active learning with image data

TL;DR: This paper develops an active learning framework for high dimensional data, a task which has been extremely challenging so far, with very sparse existing literature, and demonstrates its active learning techniques with image data, obtaining a significant improvement on existing active learning approaches.
Journal ArticleDOI

Deep supervised, but not unsupervised, models may explain IT cortical representation.

TL;DR: The results suggest that explaining IT requires computational features trained through supervised learning to emphasize the behaviorally important categorical divisions prominently reflected in IT.
Journal ArticleDOI

Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

TL;DR: A new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks, which is able to recognize 13 different types of plant diseases out of healthy leaves.
Journal ArticleDOI

ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic Segmentation

TL;DR: A deep architecture that is able to run in real time while providing accurate semantic segmentation, and a novel layer that uses residual connections and factorized convolutions in order to remain efficient while retaining remarkable accuracy is proposed.
Journal ArticleDOI

Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks

TL;DR: The experiment results show that neural signatures associated with different emotions do exist and they share commonality across sessions and individuals, and the performance of deep models with shallow models is compared.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)