scispace - formally typeset
Open AccessProceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

Reads0
Chats0
TLDR
The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture

TL;DR: Compared with existing deep neural networks, experimental results on the Modified National Institute of Standards and Technology database and NYU NORB object recognition dataset benchmark data demonstrate the effectiveness of the proposed Broad Learning System.
Proceedings ArticleDOI

Visual Tracking with Fully Convolutional Networks

TL;DR: An in-depth study on the properties of CNN features offline pre-trained on massive image data and classification task on ImageNet shows that the proposed tacker outperforms the state-of-the-art significantly.
Posted Content

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

TL;DR: A new geocentric embedding is proposed for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity to facilitate the use of perception in fields like robotics.
Posted Content

Universal adversarial perturbations

TL;DR: In this paper, the existence of a universal (image-agnostic) and very small perturbation vector that causes natural images to be misclassified with high probability was shown.
Journal ArticleDOI

Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

TL;DR: A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset, and demonstrated the potential of CNNs in analyzing lung patterns.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)