scispace - formally typeset
Search or ask a question
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

03 Dec 2012-Vol. 25, pp 1097-1105
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This paper investigates concepts through seven unique DP tasks as use cases to elucidate techniques needed to produce comparable, and in many cases, superior to results from the state-of-the-art hand-crafted feature-based classification approaches.

928 citations

Proceedings Article
05 Dec 2013
TL;DR: Comparison with the state-of-the-art trackers on some challenging benchmark video sequences shows that the deep learning tracker is more accurate while maintaining low computational cost with real-time performance when the MATLAB implementation of the tracker is used with a modest graphics processing unit (GPU).
Abstract: In this paper, we study the challenging problem of tracking the trajectory of a moving object in a video with possibly very complex background. In contrast to most existing trackers which only learn the appearance of the tracked object online, we take a different approach, inspired by recent advances in deep learning architectures, by putting more emphasis on the (unsupervised) feature learning problem. Specifically, by using auxiliary natural images, we train a stacked de-noising autoencoder offline to learn generic image features that are more robust against variations. This is then followed by knowledge transfer from offline training to the online tracking process. Online tracking involves a classification neural network which is constructed from the encoder part of the trained autoencoder as a feature extractor and an additional classification layer. Both the feature extractor and the classifier can be further tuned to adapt to appearance changes of the moving object. Comparison with the state-of-the-art trackers on some challenging benchmark video sequences shows that our deep learning tracker is more accurate while maintaining low computational cost with real-time performance when our MATLAB implementation of the tracker is used with a modest graphics processing unit (GPU).

926 citations

Proceedings Article
27 Jul 2014
TL;DR: Extensive empirical evaluations on three benchmark datasets with different kinds of images show that the proposed method has superior performance gains over several state-of-the-art supervised and unsupervised hashing methods.
Abstract: Hashing is a popular approximate nearest neighbor search approach for large-scale image retrieval. Supervised hashing, which incorporates similarity/ dissimilarity information on entity pairs to improve the quality of hashing function learning, has recently received increasing attention. However, in the existing supervised hashing methods for images, an input image is usually encoded by a vector of handcrafted visual features. Such hand-crafted feature vectors do not necessarily preserve the accurate semantic similarities of images pairs, which may often degrade the performance of hashing function learning. In this paper, we propose a supervised hashing method for image retrieval, in which we automatically learn a good image representation tailored to hashing as well as a set of hash functions. The proposed method has two stages. In the first stage, given the pairwise similarity matrix S over training images, we propose a scalable coordinate descent method to decompose S into a product of HHT where H is a matrix with each of its rows being the approximate hash code associated to a training image. In the second stage, we propose to simultaneously learn a good feature representation for the input images as well as a set of hash functions, via a deep convolutional network tailored to the learned hash codes in H and optionally the discrete class labels of the images. Extensive empirical evaluations on three benchmark datasets with different kinds of images show that the proposed method has superior performance gains over several state-of-the-art supervised and unsupervised hashing methods.

925 citations

Posted Content
TL;DR: A Multimodal Unsupervised Image-to-image Translation (MUNIT) framework that assumes that the image representation can be decomposed into a content code that is domain-invariant, and a style code that captures domain-specific properties.
Abstract: Unsupervised image-to-image translation is an important and challenging problem in computer vision. Given an image in the source domain, the goal is to learn the conditional distribution of corresponding images in the target domain, without seeing any pairs of corresponding images. While this conditional distribution is inherently multimodal, existing approaches make an overly simplified assumption, modeling it as a deterministic one-to-one mapping. As a result, they fail to generate diverse outputs from a given source domain image. To address this limitation, we propose a Multimodal Unsupervised Image-to-image Translation (MUNIT) framework. We assume that the image representation can be decomposed into a content code that is domain-invariant, and a style code that captures domain-specific properties. To translate an image to another domain, we recombine its content code with a random style code sampled from the style space of the target domain. We analyze the proposed framework and establish several theoretical results. Extensive experiments with comparisons to the state-of-the-art approaches further demonstrates the advantage of the proposed framework. Moreover, our framework allows users to control the style of translation outputs by providing an example style image. Code and pretrained models are available at this https URL

923 citations

Proceedings ArticleDOI
24 Aug 2014
TL;DR: A more general way that can learn a similarity metric from image pixels directly by using a "siamese" deep neural network that can jointly learn the color feature, texture feature and metric in a unified framework is proposed.
Abstract: Various hand-crafted features and metric learning methods prevail in the field of person re-identification Compared to these methods, this paper proposes a more general way that can learn a similarity metric from image pixels directly By using a "siamese" deep neural network, the proposed method can jointly learn the color feature, texture feature and metric in a unified framework The network has a symmetry structure with two sub-networks which are connected by a cosine layer Each sub network includes two convolutional layers and a full connected layer To deal with the big variations of person images, binomial deviance is used to evaluate the cost between similarities and labels, which is proved to be robust to outliers Experiments on VIPeR illustrate the superior performance of our method and a cross database experiment also shows its good generalization

923 citations

References
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
01 Jan 1988
TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Abstract: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion

17,604 citations

Dissertation
01 Jan 2009
TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Abstract: In this work we describe how to train a multi-layer generative model of natural images. We use a dataset of millions of tiny colour images, described in the next section. This has been attempted by several groups but without success. The models on which we focus are RBMs (Restricted Boltzmann Machines) and DBNs (Deep Belief Networks). These models learn interesting-looking filters, which we show are more useful to a classifier than the raw pixels. We train the classifier on a labeled subset that we have collected and call the CIFAR-10 dataset.

15,005 citations

Proceedings Article
21 Jun 2010
TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Abstract: Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that all have the same weights but have progressively more negative biases. The learning and inference rules for these "Stepped Sigmoid Units" are unchanged. They can be approximated efficiently by noisy, rectified linear units. Compared with binary units, these units learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset. Unlike binary units, rectified linear units preserve information about relative intensities as information travels through multiple layers of feature detectors.

14,799 citations