scispace - formally typeset
Open AccessProceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

Reads0
Chats0
TLDR
The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge

TL;DR: Neurosurgeon, a lightweight scheduler to automatically partition DNN computation between mobile devices and datacenters at the granularity of neural network layers is designed, finding that a fine-grained, layer-level computation partitioning strategy based on the data and computation variations of each layer within a DNN has significant latency and energy advantages over the status quo approach.
Journal ArticleDOI

Can we open the black box of AI

Davide Castelvecchi
- 06 Oct 2016 - 
TL;DR: In this paper, the authors show that before scientists trust artificial intelligence, they first need to understand how machines learn, and how they learn to adapt to real-world problems and situations.
Journal ArticleDOI

Federated Learning in Mobile Edge Networks: A Comprehensive Survey

TL;DR: The concept of federated learning (FL) as mentioned in this paperederated learning has been proposed to enable collaborative training of an ML model and also enable DL for mobile edge network optimization in large-scale and complex mobile edge networks, where heterogeneous devices with varying constraints are involved.
Proceedings Article

Deep convolutional neural networks on multichannel time series for human activity recognition

TL;DR: This method adopts a deep convolutional neural networks (CNN) to automate feature learning from the raw inputs in a systematic way and makes it outperform other HAR algorithms, as verified in the experiments on the Opportunity Activity Recognition Challenge and other benchmark datasets.
Proceedings ArticleDOI

Learning from massive noisy labeled data for image classification

TL;DR: A general framework to train CNNs with only a limited number of clean labels and millions of easily obtained noisy labels is introduced and the relationships between images, class labels and label noises are model with a probabilistic graphical model and further integrate it into an end-to-end deep learning system.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)