scispace - formally typeset
Search or ask a question
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

03 Dec 2012-Vol. 25, pp 1097-1105
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: The authors proposed two compact bilinear representations with the same discriminative power as the full Bilinear representation but with only a few thousand dimensions, which allow back-propagation of classification errors enabling an end-to-end optimization of the visual recognition system.
Abstract: Bilinear models has been shown to achieve impressive performance on a wide range of visual tasks, such as semantic segmentation, fine grained recognition and face recognition. However, bilinear features are high dimensional, typically on the order of hundreds of thousands to a few million, which makes them impractical for subsequent analysis. We propose two compact bilinear representations with the same discriminative power as the full bilinear representation but with only a few thousand dimensions. Our compact representations allow back-propagation of classification errors enabling an end-to-end optimization of the visual recognition system. The compact bilinear representations are derived through a novel kernelized analysis of bilinear pooling which provide insights into the discriminative power of bilinear pooling, and a platform for further research in compact pooling methods. Experimentation illustrate the utility of the proposed representations for image classification and few-shot learning across several datasets.

854 citations

Proceedings Article
01 Jan 2014
TL;DR: A simple method for constructing an image embedding system from any existing image classifier and a semantic word embedding model, which contains the $ $ class labels in its vocabulary is proposed, which outperforms state of the art methods on the ImageNet zero-shot learning task.
Abstract: Several recent publications have proposed methods for mapping images into continuous semantic embedding spaces. In some cases the embedding space is trained jointly with the image transformation. In other cases the semantic embedding space is established by an independent natural language processing task, and then the image transformation into that space is learned in a second stage. Proponents of these image embedding systems have stressed their advantages over the traditional way{} classification framing of image understanding, particularly in terms of the promise for zero-shot learning -- the ability to correctly annotate images of previously unseen object categories. In this paper, we propose a simple method for constructing an image embedding system from any existing way{} image classifier and a semantic word embedding model, which contains the $ $ class labels in its vocabulary. Our method maps images into the semantic embedding space via convex combination of the class label embedding vectors, and requires no additional training. We show that this simple and direct method confers many of the advantages associated with more complex image embedding schemes, and indeed outperforms state of the art methods on the ImageNet zero-shot learning task.

853 citations

Journal ArticleDOI
TL;DR: In this paper, Long-Term Temporal Convolutional Neural Networks (LTCNNs) were used to learn action representations with high-quality optical flow vector fields and achieved state-of-the-art results on two challenging benchmarks for action recognition.
Abstract: Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. Recent methods attempt to capture this structure and learn action representations with convolutional neural networks. Such representations, however, are typically learned at the level of a few video frames failing to model actions at their full temporal extent. In this work we learn video representations using neural networks with long-term temporal convolutions (LTC). We demonstrate that LTC-CNN models with increased temporal extents improve the accuracy of action recognition. We also study the impact of different low-level representations, such as raw values of video pixels and optical flow vector fields and demonstrate the importance of high-quality optical flow estimation for learning accurate action models. We report state-of-the-art results on two challenging benchmarks for human action recognition UCF101 (92.7%) and HMDB51 (67.2%).

853 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: A deep detail network is proposed to directly reduce the mapping range from input to output, which makes the learning process easier and significantly outperforms state-of-the-art methods on both synthetic and real-world images in terms of both qualitative and quantitative measures.
Abstract: We propose a new deep network architecture for removing rain streaks from individual images based on the deep convolutional neural network (CNN). Inspired by the deep residual network (ResNet) that simplifies the learning process by changing the mapping form, we propose a deep detail network to directly reduce the mapping range from input to output, which makes the learning process easier. To further improve the de-rained result, we use a priori image domain knowledge by focusing on high frequency detail during training, which removes background interference and focuses the model on the structure of rain in images. This demonstrates that a deep architecture not only has benefits for high-level vision tasks but also can be used to solve low-level imaging problems. Though we train the network on synthetic data, we find that the learned network generalizes well to real-world test images. Experiments show that the proposed method significantly outperforms state-of-the-art methods on both synthetic and real-world images in terms of both qualitative and quantitative measures. We discuss applications of this structure to denoising and JPEG artifact reduction at the end of the paper.

853 citations

Journal ArticleDOI
TL;DR: A large tracking database that offers an unprecedentedly wide coverage of common moving objects in the wild, called GOT-10k, and the first video trajectory dataset that uses the semantic hierarchy of WordNet to guide class population, which ensures a comprehensive and relatively unbiased coverage of diverse moving objects.
Abstract: We introduce here a large tracking database that offers an unprecedentedly wide coverage of common moving objects in the wild, called GOT-10k. Specifically, GOT-10k is built upon the backbone of WordNet structure [1] and it populates the majority of over 560 classes of moving objects and 87 motion patterns, magnitudes wider than the most recent similar-scale counterparts [19] , [20] , [23] , [26] . By releasing the large high-diversity database, we aim to provide a unified training and evaluation platform for the development of class-agnostic, generic purposed short-term trackers. The features of GOT-10k and the contributions of this article are summarized in the following. (1) GOT-10k offers over 10,000 video segments with more than 1.5 million manually labeled bounding boxes, enabling unified training and stable evaluation of deep trackers. (2) GOT-10k is by far the first video trajectory dataset that uses the semantic hierarchy of WordNet to guide class population, which ensures a comprehensive and relatively unbiased coverage of diverse moving objects. (3) For the first time, GOT-10k introduces the one-shot protocol for tracker evaluation, where the training and test classes are zero-overlapped . The protocol avoids biased evaluation results towards familiar objects and it promotes generalization in tracker development. (4) GOT-10k offers additional labels such as motion classes and object visible ratios, facilitating the development of motion-aware and occlusion-aware trackers. (5) We conduct extensive tracking experiments with 39 typical tracking algorithms and their variants on GOT-10k and analyze their results in this paper. (6) Finally, we develop a comprehensive platform for the tracking community that offers full-featured evaluation toolkits, an online evaluation server, and a responsive leaderboard. The annotations of GOT-10k’s test data are kept private to avoid tuning parameters on it.

852 citations

References
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
01 Jan 1988
TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Abstract: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion

17,604 citations

Dissertation
01 Jan 2009
TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Abstract: In this work we describe how to train a multi-layer generative model of natural images. We use a dataset of millions of tiny colour images, described in the next section. This has been attempted by several groups but without success. The models on which we focus are RBMs (Restricted Boltzmann Machines) and DBNs (Deep Belief Networks). These models learn interesting-looking filters, which we show are more useful to a classifier than the raw pixels. We train the classifier on a labeled subset that we have collected and call the CIFAR-10 dataset.

15,005 citations

Proceedings Article
21 Jun 2010
TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Abstract: Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that all have the same weights but have progressively more negative biases. The learning and inference rules for these "Stepped Sigmoid Units" are unchanged. They can be approximated efficiently by noisy, rectified linear units. Compared with binary units, these units learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset. Unlike binary units, rectified linear units preserve information about relative intensities as information travels through multiple layers of feature detectors.

14,799 citations