scispace - formally typeset
Open AccessProceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

Reads0
Chats0
TLDR
The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article

Deep exploration via bootstrapped DQN

TL;DR: Bootstrapped DQN as discussed by the authors combines deep exploration with deep neural networks for exponentially faster learning than any dithering strategy, which is a promising approach to efficient exploration with generalization.
Proceedings ArticleDOI

RepPoints: Point Set Representation for Object Detection

TL;DR: It is shown that an anchor-free object detector based on RepPoints can be as effective as the state-of-the-art anchor-based detection methods, with 46.5 AP and 67.4 $AP_{50}$ on the COCO test-dev detection benchmark, using ResNet-101 model.
Journal ArticleDOI

Deep learning for cellular image analysis

TL;DR: The intersection between deep learning and cellular image analysis is reviewed and an overview of both the mathematical mechanics and the programming frameworks of deep learning that are pertinent to life scientists are provided.
Journal ArticleDOI

DeepStack: Expert-level artificial intelligence in heads-up no-limit poker

TL;DR: DeepStack is introduced, an algorithm for imperfect-information settings that combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning.
Journal ArticleDOI

Deep Facial Expression Recognition: A Survey

TL;DR: A comprehensive survey on deep facial expression recognition (FER) can be found in this article, including datasets and algorithms that provide insights into the intrinsic problems of deep FER, including overfitting caused by lack of sufficient training data and expression-unrelated variations, such as illumination, head pose and identity bias.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)