scispace - formally typeset
Search or ask a question
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

03 Dec 2012-Vol. 25, pp 1097-1105
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
14 Jul 2017-PLOS ONE
TL;DR: A novel deep learning framework where wavelet transforms, stacked autoencoders and long-short term memory are combined for stock price forecasting and shows that the proposed model outperforms other similar models in both predictive accuracy and profitability performance.
Abstract: The application of deep learning approaches to finance has received a great deal of attention from both investors and researchers. This study presents a novel deep learning framework where wavelet transforms (WT), stacked autoencoders (SAEs) and long-short term memory (LSTM) are combined for stock price forecasting. The SAEs for hierarchically extracted deep features is introduced into stock price forecasting for the first time. The deep learning framework comprises three stages. First, the stock price time series is decomposed by WT to eliminate noise. Second, SAEs is applied to generate deep high-level features for predicting the stock price. Third, high-level denoising features are fed into LSTM to forecast the next day’s closing price. Six market indices and their corresponding index futures are chosen to examine the performance of the proposed model. Results show that the proposed model outperforms other similar models in both predictive accuracy and profitability performance.

656 citations

Posted Content
TL;DR: This paper proposes a simpler solution that use recurrent neural networks composed of rectified linear units that is comparable to LSTM on four benchmarks: two toy problems involving long-range temporal structures, a large language modeling problem and a benchmark speech recognition problem.
Abstract: Learning long term dependencies in recurrent networks is difficult due to vanishing and exploding gradients. To overcome this difficulty, researchers have developed sophisticated optimization techniques and network architectures. In this paper, we propose a simpler solution that use recurrent neural networks composed of rectified linear units. Key to our solution is the use of the identity matrix or its scaled version to initialize the recurrent weight matrix. We find that our solution is comparable to LSTM on our four benchmarks: two toy problems involving long-range temporal structures, a large language modeling problem and a benchmark speech recognition problem.

655 citations

Proceedings ArticleDOI
25 Sep 2017
TL;DR: Zhang et al. as mentioned in this paper proposed a Pose-driven Deep Convolutional (PDC) model to learn improved feature extraction and matching models from end to end, which explicitly leverages the human part cues to alleviate the pose variations and learn robust feature representations from both the global image and different local parts.
Abstract: Feature extraction and matching are two crucial components in person Re-Identification (ReID). The large pose deformations and the complex view variations exhibited by the captured person images significantly increase the difficulty of learning and matching of the features from person images. To overcome these difficulties, in this work we propose a Pose-driven Deep Convolutional (PDC) model to learn improved feature extraction and matching models from end to end. Our deep architecture explicitly leverages the human part cues to alleviate the pose variations and learn robust feature representations from both the global image and different local parts. To match the features from global human body and local body parts, a pose driven feature weighting sub-network is further designed to learn adaptive feature fusions. Extensive experimental analyses and results on three popular datasets demonstrate significant performance improvements of our model over all published state-of-the-art methods.

655 citations

Journal ArticleDOI
TL;DR: Warp is described, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation, and includes deep-learning-based models for accurate particle picking and image denoising.
Abstract: The acquisition of cryo-electron microscopy (cryo-EM) data from biological specimens must be tightly coupled to data preprocessing to ensure the best data quality and microscope usage. Here we describe Warp, a software that automates all preprocessing steps of cryo-EM data acquisition and enables real-time evaluation. Warp corrects micrographs for global and local motion, estimates the local defocus and monitors key parameters for each recorded micrograph or tomographic tilt series in real time. The software further includes deep-learning-based models for accurate particle picking and image denoising. The output from Warp can be fed into established programs for particle classification and 3D-map refinement. Our benchmarks show improvement in the nominal resolution, which went from 3.9 A to 3.2 A, of a published cryo-EM data set for influenza virus hemagglutinin. Warp is easy to install from http://github.com/cramerlab/warp and computationally inexpensive, and has an intuitive, streamlined user interface. The user-friendly software tool Warp enables automated, on-the-fly preprocessing of cryo-EM data, including motion correction, defocus estimation, particle picking and image denoising.

655 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: This paper proposes a simple yet effective human part-aligned representation for handling the body part misalignment problem, and shows state-of-the-art results over standard datasets, Market-1501,CUHK03, CUHK01 and VIPeR.
Abstract: In this paper, we address the problem of person re-identification, which refers to associating the persons captured from different cameras. We propose a simple yet effective human part-aligned representation for handling the body part misalignment problem. Our approach decomposes the human body into regions (parts) which are discriminative for person matching, accordingly computes the representations over the regions, and aggregates the similarities computed between the corresponding regions of a pair of probe and gallery images as the overall matching score. Our formulation, inspired by attention models, is a deep neural network modeling the three steps together, which is learnt through minimizing the triplet loss function without requiring body part labeling information. Unlike most existing deep learning algorithms that learn a global or spatial partition-based local representation, our approach performs human body partition, and thus is more robust to pose changes and various human spatial distributions in the person bounding box. Our approach shows state-of-the-art results over standard datasets, Market-1501, CUHK03, CUHK01 and VIPeR. 1

653 citations

References
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
01 Jan 1988
TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Abstract: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion

17,604 citations

Dissertation
01 Jan 2009
TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Abstract: In this work we describe how to train a multi-layer generative model of natural images. We use a dataset of millions of tiny colour images, described in the next section. This has been attempted by several groups but without success. The models on which we focus are RBMs (Restricted Boltzmann Machines) and DBNs (Deep Belief Networks). These models learn interesting-looking filters, which we show are more useful to a classifier than the raw pixels. We train the classifier on a labeled subset that we have collected and call the CIFAR-10 dataset.

15,005 citations

Proceedings Article
21 Jun 2010
TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Abstract: Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that all have the same weights but have progressively more negative biases. The learning and inference rules for these "Stepped Sigmoid Units" are unchanged. They can be approximated efficiently by noisy, rectified linear units. Compared with binary units, these units learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset. Unlike binary units, rectified linear units preserve information about relative intensities as information travels through multiple layers of feature detectors.

14,799 citations