scispace - formally typeset
Open AccessProceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

Reads0
Chats0
TLDR
The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Hypercolumns for object segmentation and fine-grained localization

TL;DR: In this paper, the authors define the hypercolumn at a pixel as the vector of activations of all CNN units above that pixel, and use hypercolumns as pixel descriptors.
Posted Content

Multi-view Convolutional Neural Networks for 3D Shape Recognition

TL;DR: This work presents a standard CNN architecture trained to recognize the shapes' rendered views independently of each other, and shows that a 3D shape can be recognized even from a single view at an accuracy far higher than using state-of-the-art3D shape descriptors.
Journal ArticleDOI

Mask R-CNN

TL;DR: Mask R-CNN as discussed by the authors extends Faster-RCNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition, which achieves state-of-the-art performance in instance segmentation.
Posted Content

Deep CORAL: Correlation Alignment for Deep Domain Adaptation

TL;DR: This paper extends CORAL to learn a nonlinear transformation that aligns correlations of layer activations in deep neural networks (Deep CORAL), and shows state-of-the-art performance on standard benchmark datasets.
Proceedings Article

Character-aware neural language models

TL;DR: A simple neural language model that relies only on character-level inputs that is able to encode, from characters only, both semantic and orthographic information and suggests that on many languages, character inputs are sufficient for language modeling.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)