scispace - formally typeset
Open AccessProceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

Reads0
Chats0
TLDR
The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

PointConv: Deep Convolutional Networks on 3D Point Clouds

TL;DR: The dynamic filter is extended to a new convolution operation, named PointConv, which can be applied on point clouds to build deep convolutional networks and is able to achieve state-of-the-art on challenging semantic segmentation benchmarks on 3D point clouds.
Proceedings Article

Deep Neural Networks for Object Detection

TL;DR: This paper presents a simple and yet powerful formulation of object detection as a regression problem to object bounding box masks, and defines a multi-scale inference procedure which is able to produce high-resolution object detections at a low cost by a few network applications.
Book ChapterDOI

Playing for Data: Ground Truth from Computer Games

TL;DR: In this paper, the authors present an approach to rapidly create pixel-accurate semantic label maps for images extracted from modern computer games, which enables rapid propagation of semantic labels within and across images synthesized by the game, without access to the source code or the content.
Posted Content

An Introduction to Convolutional Neural Networks

TL;DR: This document provides a brief introduction to CNNs, discussing recently published papers and newly formed techniques in developing these brilliantly fantastic image recognition models.
Journal ArticleDOI

Deep Convolutional Neural Networks for Hyperspectral Image Classification

TL;DR: Experimental results based on several hyperspectral image data sets demonstrate that the proposed method can achieve better classification performance than some traditional methods, such as support vector machines and the conventional deep learning-based methods.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)