scispace - formally typeset
Open AccessJournal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

Reads0
Chats0
TLDR
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Importance Estimation for Neural Network Pruning

TL;DR: A novel method that estimates the contribution of a neuron (filter) to the final loss and iteratively removes those with smaller scores and two variations of this method using the first and second-order Taylor expansions to approximate a filter's contribution are described.
Proceedings Article

On Detecting Adversarial Perturbations

TL;DR: In this paper, the authors propose to augment deep neural networks with a small "detector" subnetwork which is trained on the binary classification task of distinguishing genuine data from data containing adversarial perturbations.
Proceedings ArticleDOI

Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs

TL;DR: In this article, a graph convolutional network (GCN) is used to predict the visual classifiers of unseen categories, which is robust to noise in the learned knowledge graph (KG) given a semantic embedding for each node (representing visual category).
Proceedings Article

Examples are not enough, learn to criticize! Criticism for Interpretability

TL;DR: Motivated by the Bayesian model criticism framework, MMD-critic is developed, which efficiently learns prototypes and criticism, designed to aid human interpretability.
Proceedings ArticleDOI

Improved Texture Networks: Maximizing Quality and Diversity in Feed-Forward Stylization and Texture Synthesis

TL;DR: In this paper, an instance normalization module is introduced to replace batch normalization with significant improvements to the quality of image stylization, which encourages generators to sample unbiasedly from the Julesz texture ensemble.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)