scispace - formally typeset
Open AccessJournal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

Reads0
Chats0
TLDR
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos

TL;DR: In this article, the authors proposed a novel method for phase recognition that uses a convolutional neural network (CNN) to automatically learn features from cholecystectomy videos and that relies uniquely on visual information.
Journal ArticleDOI

Deep learning for computational chemistry

TL;DR: Deep neural networks have been widely applied in the field of computational chemistry, including quantitative structure activity relationship, virtual screening, protein structure prediction, quantum chemistry, materials design, and property prediction as discussed by the authors.
Proceedings ArticleDOI

Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image

TL;DR: Sparse-to-dense as discussed by the authors uses a single deep regression network to learn directly from the RGB-D raw data, and explore the impact of number of depth samples on prediction accuracy.
Proceedings ArticleDOI

Learning to See by Moving

TL;DR: In this paper, the authors investigated if the awareness of egomotion (i.e. self motion) can be used as a supervisory signal for feature learning and found that features learnt using self-motion as supervision compare favourably to features learned using class-label as supervision on the tasks of scene recognition, object recognition, visual odometry and keypoint matching.
Proceedings ArticleDOI

Very deep convolutional neural network based image classification using small training sample size

TL;DR: In this article, a modified VGG-16 network was used to fit CIFAR-10 without severe overfitting and achieved 8.45% error rate on the dataset.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)