scispace - formally typeset
Open AccessJournal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

Reads0
Chats0
TLDR
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks

TL;DR: This work presents a systematic design space exploration methodology to maximize the throughput of an OpenCL-based FPGA accelerator for a given CNN model, considering the FPGAs resource constraints such as on-chip memory, registers, computational resources and external memory bandwidth.
Journal ArticleDOI

Going Deeper in Spiking Neural Networks: VGG and Residual Architectures.

TL;DR: In this paper, the authors propose a novel algorithmic technique for generating an SNN with a deep architecture, and demonstrate its effectiveness on complex visual recognition problems such as CIFAR-10 and ImageNet.
Posted Content

High-Resolution Representations for Labeling Pixels and Regions

TL;DR: A simple modification is introduced to augment the high-resolution representation by aggregating the (upsampled) representations from all the parallel convolutions rather than only the representation from thehigh-resolution convolution, which leads to stronger representations, evidenced by superior results.
Journal ArticleDOI

Cascade R-CNN: High Quality Object Detection and Instance Segmentation

TL;DR: A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, which significantly improves high-quality detection on generic and specific object datasets, including VOC, KITTI, CityPerson, and WiderFace.
Proceedings ArticleDOI

DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection

TL;DR: This work shows that contour detection accuracy can be improved by instead making the use of the deep features learned from convolutional neural networks (CNNs), while rather than using the networks as a blackbox feature extractor, it customize the training strategy by partitioning contour (positive) data into subclasses and fitting each subclass by different model parameters.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)