scispace - formally typeset
Open AccessJournal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

Reads0
Chats0
TLDR
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Driving in the Matrix: Can virtual worlds replace human-generated annotations for real world tasks?

TL;DR: In this paper, a method to incorporate photo-realistic computer images from a simulation engine to rapidly generate annotated data that can be used for the training of machine learning algorithms is described.
Journal ArticleDOI

Unsupervised Person Re-identification: Clustering and Fine-tuning

TL;DR: A progressive unsupervised learning (PUL) method to transfer pretrained deep representations to unseen domains and demonstrates that PUL outputs discriminative features that improve the re-ID accuracy.
Journal ArticleDOI

Secure, privacy-preserving and federated machine learning in medical imaging

TL;DR: An overview of current and next-generation methods for federated, secure and privacy-preserving artificial intelligence with a focus on medical imaging applications, alongside potential attack vectors and future prospects in medical imaging and beyond are presented.
Book ChapterDOI

PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model

TL;DR: In this article, a CNN is used to detect individual keypoints and predict their relative displacements, allowing them to group keypoints into person pose instances and then associate semantic person pixels with their corresponding person instance, delivering instance-level person segmentations.
Journal ArticleDOI

Multiple instance learning: A survey of problem characteristics and applications

TL;DR: A comprehensive survey of the characteristics which define and differentiate the types of MIL problems is provided, providing insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)