scispace - formally typeset
Open AccessJournal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

Reads0
Chats0
TLDR
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Semantic Compositional Networks for Visual Captioning

TL;DR: In this article, a Semantic Compositional Network (SCN) is developed for image captioning, in which semantic concepts (i.e., tags) are detected from the image, and the probability of each tag is used to compose the parameters in a long short-term memory (LSTM) network.
Proceedings Article

Runtime Neural Pruning

TL;DR: A Runtime Neural Pruning (RNP) framework which prunes the deep neural network dynamically at the runtime and preserves the full ability of the original network and conducts pruning according to the input image and current feature maps adaptively.
Proceedings ArticleDOI

Playing for Benchmarks

TL;DR: A benchmark suite for visual perception based on more than 250K high-resolution video frames, all annotated with ground-truth data for both low-level and high-level vision tasks, providing reference baselines and highlighting challenges for future research is presented.
Proceedings ArticleDOI

Multi-view self-supervised deep learning for 6D pose estimation in the Amazon Picking Challenge

TL;DR: This paper proposes a self-supervised method to generate a large labeled dataset without tedious manual segmentation and demonstrates that the system can reliably estimate the 6D pose of objects under a variety of scenarios.
Proceedings ArticleDOI

Generalized Zero-Shot Learning via Synthesized Examples

TL;DR: This work presents a generative framework for generalized zero-shot learning where the training and test classes are not necessarily disjoint, and can generate novel exemplars from seen/unseen classes, given their respective class attributes.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)