scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: Fine-pruning is evaluated, a combination of pruning and fine-tuning, and it is shown that it successfully weakens or even eliminates the backdoors, i.e., in some cases reducing the attack success rate to 0% with only a \(0.4\%\) drop in accuracy for clean (non-triggering) inputs.
Abstract: Deep neural networks (DNNs) provide excellent performance across a wide range of classification tasks, but their training requires high computational resources and is often outsourced to third parties. Recent work has shown that outsourced training introduces the risk that a malicious trainer will return a backdoored DNN that behaves normally on most inputs but causes targeted misclassifications or degrades the accuracy of the network when a trigger known only to the attacker is present. In this paper, we provide the first effective defenses against backdoor attacks on DNNs. We implement three backdoor attacks from prior work and use them to investigate two promising defenses, pruning and fine-tuning. We show that neither, by itself, is sufficient to defend against sophisticated attackers. We then evaluate fine-pruning, a combination of pruning and fine-tuning, and show that it successfully weakens or even eliminates the backdoors, i.e., in some cases reducing the attack success rate to 0% with only a 0.4% drop in accuracy for clean (non-triggering) inputs. Our work provides the first step toward defenses against backdoor attacks in deep neural networks.

412 citations

Posted Content
TL;DR: Experiments show that the proposed deep pairwise-supervised hashing method (DPSH), to perform simultaneous feature learning and hashcode learning for applications with pairwise labels, can outperform other methods to achieve the state-of-the-art performance in image retrieval applications.
Abstract: Recent years have witnessed wide application of hashing for large-scale image retrieval. However, most existing hashing methods are based on hand-crafted features which might not be optimally compatible with the hashing procedure. Recently, deep hashing methods have been proposed to perform simultaneous feature learning and hash-code learning with deep neural networks, which have shown better performance than traditional hashing methods with hand-crafted features. Most of these deep hashing methods are supervised whose supervised information is given with triplet labels. For another common application scenario with pairwise labels, there have not existed methods for simultaneous feature learning and hash-code learning. In this paper, we propose a novel deep hashing method, called deep pairwise-supervised hashing(DPSH), to perform simultaneous feature learning and hash-code learning for applications with pairwise labels. Experiments on real datasets show that our DPSH method can outperform other methods to achieve the state-of-the-art performance in image retrieval applications.

412 citations

Posted Content
TL;DR: In this paper, a max-margin framework is developed to learn source/target embedding functions that map an arbitrary source and target domain data into a same semantic space where similarity can be readily measured.
Abstract: In this paper we consider a version of the zero-shot learning problem where seen class source and target domain data are provided. The goal during test-time is to accurately predict the class label of an unseen target domain instance based on revealed source domain side information (\eg attributes) for unseen classes. Our method is based on viewing each source or target data as a mixture of seen class proportions and we postulate that the mixture patterns have to be similar if the two instances belong to the same unseen class. This perspective leads us to learning source/target embedding functions that map an arbitrary source/target domain data into a same semantic space where similarity can be readily measured. We develop a max-margin framework to learn these similarity functions and jointly optimize parameters by means of cross validation. Our test results are compelling, leading to significant improvement in terms of accuracy on most benchmark datasets for zero-shot recognition.

411 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: A new video representation for action classification that aggregates local convolutional features across the entire spatio-temporal extent of the video and outperforms other baselines with comparable base architectures on HMDB51, UCF101, and Charades video classification benchmarks.
Abstract: In this work, we introduce a new video representation for action classification that aggregates local convolutional features across the entire spatio-temporal extent of the video. We do so by integrating state-of-the-art two-stream networks [42] with learnable spatio-temporal feature aggregation [6]. The resulting architecture is end-to-end trainable for whole-video classification. We investigate different strategies for pooling across space and time and combining signals from the different streams. We find that: (i) it is important to pool jointly across space and time, but (ii) appearance and motion streams are best aggregated into their own separate representations. Finally, we show that our representation outperforms the two-stream base architecture by a large margin (13% relative) as well as outperforms other baselines with comparable base architectures on HMDB51, UCF101, and Charades video classification benchmarks.

410 citations

Proceedings ArticleDOI
Fabian Mentzer1, Eirikur Agustsson1, Michael Tschannen1, Radu Timofte1, Luc Van Gool1 
18 Jun 2018
TL;DR: In this article, a 3D-CNN is used to learn a conditional probability model of the latent distribution of the auto-encoder during training, and the context model is updated to learn the dependencies between the symbols in the latent representation.
Abstract: Deep Neural Networks trained as image auto-encoders have recently emerged as a promising direction for advancing the state-of-the-art in image compression. The key challenge in learning such networks is twofold: To deal with quantization, and to control the trade-off between reconstruction error (distortion) and entropy (rate) of the latent image representation. In this paper, we focus on the latter challenge and propose a new technique to navigate the rate-distortion trade-off for an image compression auto-encoder. The main idea is to directly model the entropy of the latent representation by using a context model: A 3D-CNN which learns a conditional probability model of the latent distribution of the auto-encoder. During training, the auto-encoder makes use of the context model to estimate the entropy of its representation, and the context model is concurrently updated to learn the dependencies between the symbols in the latent representation. Our experiments show that this approach, when measured in MS-SSIM, yields a state-of-the-art image compression system based on a simple convolutional auto-encoder.

410 citations

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations