scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
01 Oct 2019
TL;DR: This work proposes a two-stage model that separates the inpainting problem into structure prediction and image completion, similar to sketch art, and demonstrates that this approach outperforms current state-of-the-art techniques quantitatively and qualitatively.
Abstract: In recent years, many deep learning techniques have been applied to the image inpainting problem: the task of filling incomplete regions of an image. However, these models struggle to recover and/or preserve image structure especially when significant portions of the image are missing. We propose a two-stage model that separates the inpainting problem into structure prediction and image completion. Similar to sketch art, our model first predicts the image structure of the missing region in the form of edge maps. Predicted edge maps are passed to the second stage to guide the inpainting process. We evaluate our model end-to-end over publicly available datasets CelebA, CelebHQ, Places2, and Paris StreetView on images up to a resolution of 512 × 512. We demonstrate that this approach outperforms current state-of-the-art techniques quantitatively and qualitatively.

353 citations

Proceedings ArticleDOI
17 Aug 2015
TL;DR: A stacked denoising autoencoder is applied, as an unsupervised feature learner, to capture statistical dependencies between the different elements of certain signals and improve signal recovery performance as compared to the CS approach.
Abstract: In this paper, we develop a new framework for sensing and recovering structured signals. In contrast to compressive sensing (CS) systems that employ linear measurements, sparse representations, and computationally complex convex/greedy algorithms, we introduce a deep learning framework that supports both linear and mildly nonlinear measurements, that learns a structured representation from training data, and that efficiently computes a signal estimate. In particular, we apply a stacked denoising autoencoder (SDA), as an unsupervised feature learner. SDA enables us to capture statistical dependencies between the different elements of certain signals and improve signal recovery performance as compared to the CS approach.

352 citations

Posted Content
07 Dec 2017
TL;DR: It is shown that neural networks are already vulnerable to significantly simpler - and more likely to occur naturally - transformations of the inputs, and that the current neural network-based vision models might not be as reliable as the authors tend to assume.
Abstract: Recent work has shown that neural network-based vision classifiers exhibit a significant vulnerability to misclassifications caused by imperceptible but adversarial perturbations of their inputs. These perturbations, however, are purely pixel-wise and built out of loss function gradients of either the attacked model or its surrogate. As a result, they tend to be contrived and look pretty artificial. This might suggest that such vulnerability to slight input perturbations can only arise in a truly adversarial setting and thus is unlikely to be an issue in more "natural" contexts. In this paper, we provide evidence that such belief might be incorrect. We demonstrate that significantly simpler, and more likely to occur naturally, transformations of the input - namely, rotations and translations alone, suffice to significantly degrade the classification performance of neural network-based vision models across a spectrum of datasets. This remains to be the case even when these models are trained using appropriate data augmentation. Finding such "fooling" transformations does not require having any special access to the model - just trying out a small number of random rotation and translation combinations already has a significant effect. These findings suggest that our current neural network-based vision models might not be as reliable as we tend to assume. Finally, we consider a new class of perturbations that combines rotations and translations with the standard pixel-wise attacks. We observe that these two types of input transformations are, in a sense, orthogonal to each other. Their effect on the performance of the model seems to be additive, while robustness to one type does not seem to affect the robustness to the other type. This suggests that this combined class of transformations is a more complete notion of similarity in the context of adversarial robustness of vision models.

352 citations

Posted Content
TL;DR: The robustness of humans and current convolutional deep neural networks on object recognition under twelve different types of image degradations is compared and it is shown that DNNs trained directly on distorted images consistently surpass human performance on the exact distortion types they were trained on.
Abstract: We compare the robustness of humans and current convolutional deep neural networks (DNNs) on object recognition under twelve different types of image degradations. First, using three well known DNNs (ResNet-152, VGG-19, GoogLeNet) we find the human visual system to be more robust to nearly all of the tested image manipulations, and we observe progressively diverging classification error-patterns between humans and DNNs when the signal gets weaker. Secondly, we show that DNNs trained directly on distorted images consistently surpass human performance on the exact distortion types they were trained on, yet they display extremely poor generalisation abilities when tested on other distortion types. For example, training on salt-and-pepper noise does not imply robustness on uniform white noise and vice versa. Thus, changes in the noise distribution between training and testing constitutes a crucial challenge to deep learning vision systems that can be systematically addressed in a lifelong machine learning approach. Our new dataset consisting of 83K carefully measured human psychophysical trials provide a useful reference for lifelong robustness against image degradations set by the human visual system.

351 citations

Book ChapterDOI
08 Oct 2016
TL;DR: This work shows that, by incorporating sparse constraints into the objective function, it is possible to decimate the number of neurons during the training stage, thus theNumber of parameters and the memory footprint of the neural network are reduced, which is desirable at the test time.
Abstract: To attain a favorable performance on large-scale datasets, convolutional neural networks (CNNs) are usually designed to have very high capacity involving millions of parameters. In this work, we aim at optimizing the number of neurons in a network, thus the number of parameters. We show that, by incorporating sparse constraints into the objective function, it is possible to decimate the number of neurons during the training stage. As a result, the number of parameters and the memory footprint of the neural network are also reduced, which is also desirable at the test time. We evaluated our method on several well-known CNN structures including AlexNet, and VGG over different datasets including ImageNet. Extensive experimental results demonstrate that our method leads to compact networks. Taking first fully connected layer as an example, our compact CNN contains only \(30\,\%\) of the original neurons without any degradation of the top-1 classification accuracy.

350 citations

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations