scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
06 Sep 2016
TL;DR: This paper proposed an approach to extend layer-wise relevance propagation to neural networks with local renormalization layers, which is a very common product-type nonlinearity in convolutional neural networks.
Abstract: Layer-wise relevance propagation is a framework which allows to decompose the prediction of a deep neural network computed over a sample, e.g. an image, down to relevance scores for the single input dimensions of the sample such as subpixels of an image. While this approach can be applied directly to generalized linear mappings, product type non-linearities are not covered. This paper proposes an approach to extend layer-wise relevance propagation to neural networks with local renormalization layers, which is a very common product-type non-linearity in convolutional neural networks. We evaluate the proposed method for local renormalization layers on the CIFAR-10, Imagenet and MIT Places datasets.

321 citations

Journal ArticleDOI
TL;DR: In this article, 40 state-of-the-art models (28 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) were evaluated over 6 challenging datasets for the purpose of benchmarking salient object detector and segmentation methods.
Abstract: We extensively compare, qualitatively and quantitatively, 40 state-of-the-art models (28 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) over 6 challenging datasets for the purpose of benchmarking salient object detection and segmentation methods. From the results obtained so far, our evaluation shows a consistent rapid progress over the last few years in terms of both accuracy and running time. The top contenders in this benchmark significantly outperform the models identified as the best in the previous benchmark conducted just two years ago. We find that the models designed specifically for salient object detection generally work better than models in closely related areas, which in turn provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems. In particular, we analyze the influences of center bias and scene complexity in model performance, which, along with the hard cases for state-of-the-art models, provide useful hints towards constructing more challenging large scale datasets and better saliency models. Finally, we propose probable solutions for tackling several open problems such as evaluation scores and dataset bias, which also suggest future research directions in the rapidly-growing field of salient object detection.

321 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: This paper provides a framework for few-shot learning by introducing dynamic classifiers that are constructed from few samples and empirically shows that such modelling leads to robustness against perturbations and yields competitive results on the task of supervised and semi-supervised few- shot classification.
Abstract: Object recognition requires a generalization capability to avoid overfitting, especially when the samples are extremely few. Generalization from limited samples, usually studied under the umbrella of meta-learning, equips learning techniques with the ability to adapt quickly in dynamical environments and proves to be an essential aspect of life long learning. In this paper, we provide a framework for few-shot learning by introducing dynamic classifiers that are constructed from few samples. A subspace method is exploited as the central block of a dynamic classifier. We will empirically show that such modelling leads to robustness against perturbations (e.g., outliers) and yields competitive results on the task of supervised and semi-supervised few-shot classification. We also develop a discriminative form which can boost the accuracy even further. Our code is available at https://github.com/chrysts/dsn_fewshot

321 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the proposed DCS outperforms the other two schemes in terms of accuracy and is able to solve typical ISPs quickly within 1 s, and the proposed deep-learning inversion scheme is promising in providing quantitative images in real time.
Abstract: This paper is devoted to solving a full-wave inverse scattering problem (ISP), which is aimed at retrieving permittivities of dielectric scatterers from the knowledge of measured scattering data. ISPs are highly nonlinear due to multiple scattering, and iterative algorithms with regularizations are often used to solve such problems. However, they are associated with heavy computational cost, and consequently, they are often time-consuming. This paper proposes the convolutional neural network (CNN) technique to solve full-wave ISPs. We introduce and compare three training schemes based on U-Net CNN, including direct inversion, backpropagation, and dominant current schemes (DCS). Several representative tests are carried out, including both synthetic and experimental data, to evaluate the performances of the proposed methods. It is demonstrated that the proposed DCS outperforms the other two schemes in terms of accuracy and is able to solve typical ISPs quickly within 1 s. The proposed deep-learning inversion scheme is promising in providing quantitative images in real time.

320 citations

Book ChapterDOI
08 Sep 2018
TL;DR: Huang et al. as mentioned in this paper proposed a hierarchical triplet loss (HTL) to automatically collect informative training samples via a defined hierarchical tree that encodes global context information, which allows the model to learn more discriminative features from visual similar classes, leading to faster convergence and better performance.
Abstract: We present a novel hierarchical triplet loss (HTL) capable of automatically collecting informative training samples (triplets) via a defined hierarchical tree that encodes global context information. This allows us to cope with the main limitation of random sampling in training a conventional triplet loss, which is a central issue for deep metric learning. Our main contributions are two-fold. (i) we construct a hierarchical class-level tree where neighboring classes are merged recursively. The hierarchical structure naturally captures the intrinsic data distribution over the whole dataset. (ii) we formulate the problem of triplet collection by introducing a new violate margin, which is computed dynamically based on the designed hierarchical tree. This allows it to automatically select meaningful hard samples with the guide of global context. It encourages the model to learn more discriminative features from visual similar classes, leading to faster convergence and better performance. Our method is evaluated on the tasks of image retrieval and face recognition, where it outperforms the standard triplet loss substantially by 1%–18%, and achieves new state-of-the-art performance on a number of benchmarks.

319 citations

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations