scispace - formally typeset
Open AccessJournal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

Reads0
Chats0
TLDR
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition

TL;DR: A deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions, and combines each of these meta-architectures with “deep feature extractors” such as VGG net and Residual Network.
Posted Content

Meta-Learning in Neural Networks: A Survey

TL;DR: A new taxonomy is proposed that provides a more comprehensive breakdown of the space of meta-learning methods today, including few-shot learning, reinforcement learning and architecture search, and promising applications and successes.
Posted Content

Deeper Depth Prediction with Fully Convolutional Residual Networks

TL;DR: In this article, a fully convolutional architecture, encompassing residual learning, is proposed to model the ambiguous mapping between monocular images and depth maps, which can be trained end-to-end and does not rely on post-processing techniques such as CRFs or other additional refinement steps.
Journal ArticleDOI

Reconciling modern machine-learning practice and the classical bias-variance trade-off.

TL;DR: This work shows how classical theory and modern practice can be reconciled within a single unified performance curve and proposes a mechanism underlying its emergence, and provides evidence for the existence and ubiquity of double descent for a wide spectrum of models and datasets.
Posted Content

Searching for Activation Functions

TL;DR: In this paper, a combination of exhaustive and reinforcement learning-based search is proposed to discover multiple novel activation functions, including Swish, which is the most successful and widely used activation function in deep networks.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)