scispace - formally typeset
Open AccessJournal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

Reads0
Chats0
TLDR
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Abstract
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

The 2017 DAVIS Challenge on Video Object Segmentation

TL;DR: The scope of the benchmark, the main characteristics of the dataset, the evaluation metrics of the competition, and a detailed analysis of the results of the participants to the challenge are described.
Proceedings Article

Regularization with stochastic transformations and perturbations for deep semi-supervised learning

TL;DR: This paper proposed an unsupervised loss function that takes advantage of the stochastic nature of these methods and minimizes the difference between the predictions of multiple passes of a training sample through the network.
Proceedings ArticleDOI

DeepXplore: Automated Whitebox Testing of Deep Learning Systems

TL;DR: DeepXplore as discussed by the authors is a white box framework for systematically testing real-world deep learning (DL) systems, which leverages multiple DL systems with similar functionality as cross-referencing oracles to avoid manual checking.
Proceedings ArticleDOI

Do deep features generalize from everyday objects to remote sensing and aerial scenes domains

TL;DR: ConvNets trained for recognizing everyday objects for the classification of aerial and remote sensing images obtained the best results for aerial images, while for remote sensing, they performed well but were outperformed by low-level color descriptors, such as BIC.
Book ChapterDOI

Seed, expand and constrain: Three principles for weakly-supervised image segmentation

TL;DR: It is shown experimentally that training a deep convolutional neural network using the proposed loss function leads to substantially better segmentations than previous state-of-the-art methods on the challenging PASCAL VOC 2012 dataset.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Related Papers (5)